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Some Information Theory
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Why Information Theory?

The fundamental equation involves cross-entropy.

Cross-entropy is an information-theoretic concept.

Information theory arises in many places and many forms in
deep learning.
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Entropy of a Distribution

The entropy of a distribution P is defined by

H(P ) = Ey∼P [ − lnP (y)] in units of “nats”

H2(P ) = Ey∼P [ − log2 P (y)] in units of bits
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Why Bits?

Why is − log2 P (y) a number of bits?

Example: Let P be a uniform distribution on 256 values.

Ey∼P [ − log2 P (y)] = − log2
1

256
= log2 256 = 8 bits = 1 byte

1 nat = 1
ln 2 bits ≈ 1.44 bits
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Shannon’s Source Coding Theorem

Why is − log2 P (y) a number of bits?

A prefix-free code for Y assigns a bit string c(y) to each y ∈ Y
such that no code string is prefix of any other code string.

For a probability distribution P on Y we consider the average
code length Ey∼P [ |c(y)|].

Theorem: For any c we have Ey∼P |c(y)| ≥ H2(P ).

Theorem: There exists c with Ey∼P |c(y)| ≤ H2(P ) + 1.
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Cross Entropy

Let P and Q be two distribution on the same set.

H(P,Q) = Ey∼P [ − ln Q(y)]

Φ∗ = argmin
Φ

H(Pop, PΦ)

H(P,Q) also has a data compression interpretation.

H(P,Q) can be interpreted as 1.44 times the number of bits
used to code draws from P when using the imperfect code
defined by Q.
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Entropy, Cross Entropy and KL Divergence

Let P and Q be two distribution on the same set.

Entropy : H(P ) = Ey∼P [− ln P (y)]

CrossEntropy : H(P,Q) = Ey∼P [− ln Q(y)]

KL Divergence : KL(P,Q) = H(P,Q)−H(P )

= Ey∼P ln
P (y)
Q(y)

We have H(P,Q) ≥ H(P ) or equivalently KL(P,Q) ≥ 0.
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The Universality Assumption

Φ∗ = argmin
Φ

H(Pop, PΦ) = argmin
Φ

H(Pop) +KL(Pop, PΦ)

Universality assumption: PΦ can represent any distribution
and Φ can be fully optimized.

This is clearly false for deep networks. But it gives important
insights like:

PΦ∗ = Pop

This is the motivatation for the fundamental equation.
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Asymmetry of Cross Entropy

Consider

Φ∗ = argmin
Φ

H(P,QΦ) (1)

Φ∗ = argmin
Φ

H(QΦ, P ) (2)

For (1) QΦ must cover all of the support of P .

For (2) QΦ concentrates all mass on the point maximizing P .
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Asymmetry of KL Divergence
Consider

Φ∗ = argmin
Φ

KL(P,QΦ)

= argmin
Φ

H(P,QΦ) (1)

Φ∗ = argmin
Φ

KL(QΦ, P )

= argmin
Φ

H(QΦ, P )−H(QΦ) (2)

If QΦ is not universally expressive we have that (1) still forces
QΦ to cover all of P (or else the KL divergence is infinite)
while (2) allows QΦ to be restricted to a single mode of P (a
common outcome).



Proving KL(P,Q) ≥ 0: Jensen’s Inequality

For f convex (upward curving) we have

E[f (x)] ≥ f (E[x])
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Proving KL(P,Q) ≥ 0

KL(P,Q) = Ey∼P

[
− ln

Q(y)

P (y)

]
≥ − lnEy∼P

Q(y)

P (y)

= − ln
∑
y

P (y)
Q(y)

P (y)

= − ln
∑
y

Q(y)

= 0
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Appendix: The Rearrangement Trick

KL(P,Q) = Ex∼P

[
ln

P (x)

Q(x)

]
= Ex∼P [(− lnQ(x))− (− lnP (x))]

= (Ex∼P [− lnQ(x)])− (Ex∼P [− lnP (x)])

= H(P,Q)−H(P )

In general Ex∼P ln (
∏

iAi) = Ex∼P
∑

i lnAi
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Summary

Φ∗ = argminΦ H(Pop, PΦ) unconditional

Φ∗ = argminΦ Ex∼Pop H(Pop(y|x), PΦ(y|x)) conditional

Entropy : H(P ) = Ey∼P [− ln P (y)]

CrossEntropy : H(P,Q) = Ey∼P [− ln Q(y)]

KL Divergence : KL(P,Q) = H(P,Q)−H(P )

= Ey∼P ln
P (y)
Q(y)

H(P,Q) ≥ H(P ), KL(P,Q) ≥ 0, argminQ H(P,Q) = P
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