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Some Information Theory



Why Information Theory?

The fundamental equation involves cross-entropy.

Cross-entropy is an information-theoretic concept.

Information theory arises in many places and many forms in
deep learning.



Entropy of a Distribution

The entropy of a distribution P is defined by

H(P)=FE,.p|—InP(y) inunits of “nats”

Hy(P) = E,p| —logy P(y)| in units of bits



Why Bits?
Why is —logy P(y) a number of bits?

Example: Let P be a uniform distribution on 256 values.

Ey.p | —logy P(y)| = —logg -— = logy 256 = 8 bits = 1 byte

250

1 nat = 11 bits ~ 1.44 bits



Shannon’s Source Coding Theorem
Why is —logys P(y) a number of bits?

A prefix-free code for ) assigns a bit string c(y) to each y € Y
such that no code string is prefix of any other code string.

For a probability distribution P on ) we consider the average
code length E, p | |c(y)]].

Theorem: For any ¢ we have I, p |c(y)| = Ho(P).

Theorem: There exists ¢ with E, _p |c(y)| < Ho(P) + 1.
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Cross Entropy
Let P and () be two distribution on the same set.

H(P,Q) = Ey.p | —In Q(y)

®* = argmin H(Pop, Pyp)
o

H(P,Q) also has a data compression interpretation.

H(P, () can be interpreted as 1.44 times the number of bits

used to code draws from P when using the imperfect code
defined by Q).



Entropy, Cross Entropy and KL Divergence
Let P and () be two distribution on the same set.
Entropy : H(P) = E,.p [—In P(y)
CrossEntropy :  H(P, Q) = E,p |—In Q(y)]
KL Divergence : KL(P,Q)) = H(P, Q) — H(P)
= Eyp In %

We have H(P,()) > H(P) or equivalently K L(P, Q) > 0.
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The Universality Assumption

®* = argmin H(Pop, Pp) = argmin H (Pop) + K L(Pop, Pyp)
o o

Universality assumption: FPg can represent any distribution
and ¢ can be fully optimized.

This is clearly false for deep networks. But it gives important
insights like:

Pq)* — POp

This is the motivatation for the fundamental equation.
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Asymmetry of Cross Entropy

Consider

O* = argql;nin H(P,Qp) (1)

®* = argmin H(Qg, P) (2)
o

For (1) Q¢ must cover all of the support of P.

For (2) Q¢ concentrates all mass on the point maximizing P.



Asymmetry of KL Divergence
Consider

®* = argmin KL(P,Qg¢)
o

= argmin H(P,Qg) (1)
o

®* = argmin KL(Qg, P)
o

afgqlgﬂin H(Qg, P) — H(Qs) (2)

If Q¢ is not universally expressive we have that (1) still forces
Q¢ to cover all of P (or else the KL divergence is infinite)
while (2) allows Q¢ to be restricted to a single mode of P (a
common outcome).



Proving KL(P,Q) > 0: Jensen’s Inequality

Convex

i
|
|
:
r Y
For f convex (upward curving) we have

E[f(z)] =z f(Elz])
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KL(P, Q) — EyNP

Proving KL(P,Q) > 0

Qy)
o %]
Qy)

> —InE, p 2

(y)

— Qy)
= —1 zy: P(y)P<y>

= —In Yy Q(y)
Y

= 0
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Appendix: The Rearrangement Trick

ool

= Epopl(=InQ(z)) — (= In P(z))]

In

KL(P,Q) = Eyp

— (Epp [=Q@)]) = (Bypep [~ In P(2)))
— H(P,Q) - H(P)

In general £, .p In(]]; 4;) = E,op D _;InA;
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Summary
O* = argming, H (Pop, Pg) unconditional
®* = argming E,~po, H(Pop(y|r), Pp(y|z)) conditional
Entropy H(P) = E,.p [—In P(y)

CrossEntropy : H(P,Q) = Eyp —In Q(y)]

KL Divergence : KL(P,Q)) = H(P,Q) — H(P)

Q(
H(P,Q)> H(P), KL(P,Q)>0, argming H(P,Q)=P



END



