
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2022

Backpropagation with Arrays and Tensors

1



Program Values as Objects

In a framework the program (or deep model) variables are
objects in the sense of object oriented programming or Python.

Each object x stores its input objects in its instance variables
and has an instance variable x.value storing its value.

The instance variable x.value is filled by sending x a forward
message after its inputs have computed their values.

Each object x has an instance variable x.grad storing ∂L/∂x.

x.grad is filled by the backward methods of objects y that
use x as an input. The backward method for y is called after
y.grad has been filled and adds into x.grad for each input x.

2



Scalar Products

Consider a scalar product z = xy.

The forward method for z computes.

z.value = x.value ∗ y.value

The backward method for z computes

x.grad += z.grad ∗ y.value

y.grad += z.grad ∗ x.value

3



Handling Arrays

Consider an inner product between vectors

z = x>y

In this case z.forward does

z.value = 0

for i z.value += x.value[i] ∗ y.value[i]

The backward method for z treats each += instruction sepa-
rately and does.

for i x.grad[i] += y.value[i] ∗ z.grad

for i y.grad[i] += x.value[i] ∗ z.grad

4



Handling Arrays

Now consider multiplying a vector x by a matrix W .

y = Wx

In this case case y.forward does

for j y.value[j] = 0

for i, j y.value[j] += W.value[j, i] ∗ x.value[i]

The backward procedure y.backward treats each individual +=
as a scalar product and does

for i, j x.grad[i] += W.value[j, i] ∗ y.grad[j]

for i, j W.grad[j, i] += x.value[i] ∗ y.grad[j]

5



A Linear Threshold Layer

s = σ (Wh−B)

for j s̃[j] = 0

for j, i s̃[j] += W [j, i]h[i]

for j s[j] = σ(s̃[j]−B[j])

Backpropagation is also done with loops treating each individ-
ual assignment and += instruction.

6



General Tensor Operations

In practice all deep learning source code can be written us-
ing scalar assignments and loops over scalar assignments. For
example:

for h, i, j, k Y [h, i, j] += A[h, i, k] B[h, j, k]

has backpropagation loops

for h, i, j, k A.grad[h, i, k] += Y.grad[h, i, j] B.value[h, j, k]
for h, i, j, k B.grad[h, j, k] += Y.grad[h, i, j] A.value[h, i, k]

7



END


