TTIC 31230 Fundamentals of Deep Learning, winter 2019

Backpropagation Problems

Problem 1: Backprogation through a ReLU linear threshold unit. Consider the computation

$$
\begin{aligned}
y & =\sigma\left(w^{\top} x\right) \\
\ell & =\mathcal{L}(y)
\end{aligned}
$$

for $w, x \in R^{d}$ with $\sigma(z)=\max (z, 0)$ (the ReLU activation) and for $\mathcal{L}(y)$ an arbitrary function (a loss function). Let w_{i} denote the i th component of the weight vector w. Give an expression for $\frac{\partial \ell}{\partial w_{i}}$ as a function of $\frac{d \mathcal{L}(y)}{d y}$.

Solution: There are various correct ways of writing the answer. The following corresponds to a backpropagation computation.

$$
\begin{aligned}
\frac{d \ell}{d y} & =\frac{d \mathcal{L}(y)}{d y} \\
\frac{d \ell}{d w_{i}} & =\frac{d \ell}{d y} \frac{d y}{d w_{i}}=\frac{d \ell}{d y} x_{i} \mathbf{1}\left[w_{i} x_{i} \geq 0\right]
\end{aligned}
$$

Problem 3: Backpropagation through softmax. Consider the following softmax.

$$
\begin{aligned}
Z[b] & =\sum_{j} \exp (s[b, j]) \\
p[b, j] & =\exp (s[b, j]) / Z[b]
\end{aligned}
$$

An alternative way to compute this is to initialize the tensors Z and p to zero and then execute the following loops.
for $b, j \quad Z[b]+=\exp (s[b, j])$
for $b, j \quad p[b, j]+=\exp (s[b, j]) / Z[b]$
Each individual $+=$ operation inside the loops can be treated independently in backpropagation.
(a) Give a back-propagation loop over $+=$ updates based on the second loop for adding to s.grad using p.grad (and using the forward-computed tensors Z and $s)$.

Solution: For $b, j \quad s . \operatorname{grad}[b, j]+=p \cdot \operatorname{grad}[b, j] \exp (s[b, j]) / Z[b]$
(b) Give a back-propagation loop over += updates based on the second equation for adding to Z.grad using p.grad (and using the forward-computed tensors s and Z).

Solution: For $b, j \quad Z \cdot \operatorname{grad}[b]-=p \cdot \operatorname{grad}[b, j] \exp (s[b, j]) / Z[b]^{2}$
(c) Give a back-propagation loop over $+=$ updates based on the first equation for adding to s.grad using Z.grad (and using the forward-computed tensor s).

Solution: For $b, j \quad s \cdot \operatorname{grad}[b, j]+=Z \cdot \operatorname{grad}[b] \exp (s[b, j])$

Problem 4: Optimizing Backpropagation through softmax. Show that the addition to s.grad shown in problem 1 can be computed using the following more efficient updates.
for $b, j \quad e[b]-=p[b, j] p \cdot \operatorname{grad}[b, j]$
for $b, j \quad s \cdot \operatorname{grad}[b, j]+=p[b, j](p \cdot \operatorname{grad}[b, j]+e[b])$
Solution: The updates for problem 1 can be written as

$$
\text { for } \begin{aligned}
b \cdot \operatorname{grad}[b] & =\sum_{j}-p \cdot \operatorname{grad}[b, j] \exp (s[b, j]) / Z[b]^{2} \\
& =\left(\sum_{j}-p[b, j] p \cdot \operatorname{grad}[b, j]\right) / Z[b] \\
& =e[b] / Z[b]
\end{aligned}
$$

$$
\text { for } \begin{aligned}
b, j \quad s \cdot \operatorname{grad}[b, j] & =p \cdot \operatorname{grad}[b, j] \exp (s[b, j]) / Z[b]+Z \cdot \operatorname{grad}[b] \exp (s[b, j]) \\
& =p \cdot \operatorname{grad}[b, j](\exp (s[b, j]) / Z[b])+e[b](\exp (s[b, j]) / Z[b]) \\
& =p[b, j](p \cdot \operatorname{grad}[b, j]+e[b])
\end{aligned}
$$

This formula shows how hand-written back-propagation methods for "layers" such as softmax can be more efficient than compiler-generated back-propagation code. While optimizing compilers can of course be written, one must keep in mind the trade-off between the abstraction level of the programming language and the efficiency of the generated code.

Problem 5. Backpropogation through batch normalization. Consider the following set of $+=$ statements defining batch normalization where all computed tensors are initialized to zero.

For $b, j \mu[j]+=\frac{1}{B} x[b, j]$
For $b, j s[j]+=\frac{1}{B-1}(x[b, j]-\mu[j])^{2}$
For $b, j \quad x^{\prime}[b, j]+=\frac{x[b, j]-\mu[j]}{\sqrt{s[j]}}$

Give backpropagation $+=($ or $-=)$ loops for computing $x \cdot \operatorname{grad}[b, j], \mu \cdot \operatorname{grad}[j]$, and $s . \operatorname{grad}[j]$ from $x^{\prime} . \operatorname{grad}[b, j]$. The loops should be given in the order they are to be executed.

Solution:
For $b, j \quad x \cdot \operatorname{grad}[b, j] \quad+=\frac{x^{\prime} . \operatorname{grad}[b, j]}{\sqrt{s[j]}}$
For $b, j \quad \mu \cdot \operatorname{grad}[j] \quad=\frac{x^{\prime} \cdot g r a d[b, j]}{\sqrt{s[j]}}$
For $b, j \quad s . g r a d[j] \quad=\frac{1}{2}(x[b, j]-\mu[j]) s[j]^{-3 / 2} x^{\prime} . g r a d[b, j]$
For $b, j \quad x \cdot \operatorname{grad}[b, j] \quad+=\frac{2}{B-1}(x[b, j]-\mu[j]) \operatorname{s.grad}[j]$
For $b, j \quad \mu \cdot \operatorname{grad}[j] \quad=\frac{2}{B-1}(x[b, j]-\mu[j]) s \cdot \operatorname{grad}[j]$
For $b, j \quad x \cdot \operatorname{grad}[b, j] \quad+=\quad \frac{1}{B} \mu \cdot \operatorname{grad}[j]$
Problem 6. Backpropagation through a UGRNN. Equations defining a UGRNN are given below.

$$
\begin{aligned}
\tilde{R}_{t}[b, j] & =\left(\sum_{i} W^{h, R}[j, i] h_{t-1}[b, i]\right)+\left(\sum_{k} W^{x, R}[j, k] x_{t}[b, k]\right)-B^{R}[j] \\
R_{t}[b, j] & =\tanh \left(\tilde{R}_{t}[b, j]\right) \\
\tilde{G}_{t}[b, j] & =\left(\sum_{i} W^{h, G}[j, i] h_{t-1}[b, i]\right)+\left(\sum_{k} W^{x, G}[j, k] x_{t}[b, k]\right)-B^{G}[j] \\
G_{t}[b, j] & =\sigma\left(\tilde{G}_{t}[b, j]\right) \\
h_{t}[b, j] & =G_{t}[b, j] h_{t-1}[b, j]+\left(1-G_{t}[b, j]\right) R_{t}[b, j]
\end{aligned}
$$

(a) Rewrite the first equation defining \tilde{R}_{t} using $+=$ loops instead of summations assuming that all computed tensors are initialized to zero.

Solution:

$$
\begin{aligned}
\text { for } b, j, i \tilde{R}_{t}[b, j] & +=W^{h, R}[j, i] h_{t-1}[b, i] \\
\text { for } b, j, k \tilde{R}_{t}[b, j] & +=W^{X, R}[k, i] x_{t}[b, k] \\
\text { for } b, j \tilde{R}_{t}[b, j] & -=B^{R}[j]
\end{aligned}
$$

(b) Give += loops for the backward computation for your solution to part (a) using the convention that parameter gradients are averaged over the batch and where the batch size is B.

Solution:

$$
\begin{array}{r}
\text { for } b, j, i W^{h, R} \cdot \operatorname{grad}[j, i]+=\frac{1}{B} h_{t-1}[b, i] \tilde{R}_{t} \cdot \operatorname{grad}[b, j] \\
\text { for } b, j, i h_{t-1} \cdot \operatorname{grad}[b, j] \quad+=W^{h, R}[j, i] \tilde{R}_{t} \cdot \operatorname{grad}[b, j] \\
\text { for } b, j, k W^{x, R} \cdot \operatorname{grad}[j, k] \quad+=\frac{1}{B} x[b, k] \tilde{R}_{t} \cdot \operatorname{grad}[b, j] \\
\text { for } b, j B^{R} \cdot \operatorname{grad}[j] \quad-=\frac{1}{B} \tilde{R}_{t} \cdot \operatorname{grad}[b, j]
\end{array}
$$

Problem 7: Writing framework code. Consider a function $c: R^{d} \times R^{s} \rightarrow$ R^{s}, in other words a function that takes a vector of dimension d and a vector of dimension s and yields a vector of dimension s. Given a sequence of vectors $x_{0}, x_{2}, \ldots, x_{T}$ with $x_{t} \in R^{d}$ we can define a sequence of vectors $h_{0}, h_{1}, \ldots, h_{T}$ by the equations

$$
\begin{aligned}
h_{0} & =c\left(x_{0}, 0\right) \\
h_{t} & =c\left(x_{t}, h_{t-1}\right) \text { for } 1 \leq t \leq T
\end{aligned}
$$

When the function c is defined by a neural network the resulting network mapping x_{1}, \ldots, x_{T} to h_{0}, \ldots, h_{T} is called a recurrent neural network (RNN).
a. In the educational framework EDF we work with objects where each object has a value attribute and a gradient attribute each of which have tensor values where the value tensor and the gradient tensor are the same shape. Each object is assigned a value in a forward pass and assigned a gradient in a backward pass. Suppose that we are given an EDF procedure CELL which takes as arguments a parameter object Phi and two EDF objects X and H where the value attribute of the object X is a d-dimensional vector and the value attribute of the object H is an s-dimensional vector. A call to the procedure CELL(Phi, X,H) returns an EDF object whose value attribute is computed in a forward pass in some possibly complex way from the value attributes of Phi, X and H. Given a sequence X [] of EDF objects whose value attributes are d-dimensional vectors, and an EDF object ZERO representing the constant s-dimensional zero vector, write a procedure for constructing the sequence of EDF objects representing h_{1}, h_{2}, \ldots, h_{T} as defined by the above RNN equations. Your solution can be in Python or informal high level pseudo code.

Solution: We can use the equations given as the definition of the computation graph if we replace c in the equations with the function CELL.

```
\(\mathrm{X}=\operatorname{list}()\)
\(\mathrm{H}=\operatorname{list}()\)
\(\mathrm{H}[0]=\mathrm{CELL}(\mathrm{Phi}, \mathrm{X}[0], \mathrm{ZERO})\)
for \(t\) in range \((1, T)\)
    \(\mathrm{H}[\mathrm{t}]=\mathrm{CELL}(\mathrm{Phi}, \mathrm{X}[\mathrm{t}], \mathrm{H}[\mathrm{t}-1])\)
```

b. Deep learning systems generally make extensive use of parallel computation for training. How does the parallel running time of an RNN computation graph scale with the length T ?

Solution: The parallel running time is proportional to T. RNNS are fundamentally serial and this is a problem. RNNs have recently been largely replaced by the transformer architecture.

