TTIC 31230 Fundamentals of Deep Learning, winter 2019
Backpropagation Problems

Problem 1: Backprogation through a ReLU linear threshold unit.
Consider the computation

y = o(w'z)

¢ = Ly)

for w,x € R? with o(2) = max(z,0) (the ReLU activation) and for £(y) an
arbitrary function (a loss function). Let w; denote the ¢th component of the
weight vector w. Give an expression for aani as a function of %S”.

Solution: There are various correct ways of writing the answer. The following

corresponds to a backpropagation computation.

e dL(y)
dy dy
dl de dy dé .
T dy = —— il x>
dw; dy dw; dy Ti [w r > O}

Problem 2: Backpropagation through softmax. Consider the following
softmax.

21 = Y explslb. i)
ploogl = explslb. 1)/ 210

An alternative way to compute this is to initialize the tensors Z and p to zero
and then execute the following loops.

for b,j  Z[b] += exp(s[b, j])
for b, 5 plb, j] += exp(s[b, j])/Z[b]

Each individual += operation inside the loops can be treated independently in
backpropagation.

(a) Give a back-propagation loop over += updates based on the second loop for
adding to s.grad using p.grad (and using the forward-computed tensors Z and

s).
Solution: For b,5 s.grad[b, j| += p.grad[b, j]exp(s[b, j])/Z[b]
(b) Give a back-propagation loop over += updates based on the second equation

for adding to Z.grad using p.grad (and using the forward-computed tensors s
and 7).



Solution: For b,j Z.grad[b] -= p.grad[b, j] exp(s[b, j])/Z[b]?

(¢) Give a back-propagation loop over += updates based on the first equation
for adding to s.grad using Z.grad (and using the forward-computed tensor s).

Solution: For b,j s.gradb, j|] += Z.grad[b] exp(sb, j])

Problem 3: Optimizing Backpropagation through softmax. Show that
the addition to s.grad shown in problem 2 can be computed using the following
more efficient updates.

for b,j e[b] == p[b, j]p.grad[b, j]
for b,7 s.grad[b, j] += p[b, j](p.grad[b, j] + €[b])

Solution: The updates for problem 1 can be written as

forb Z.gradh] = Z —p.grad[b, j] exp(s[b, j])/Z[b]?

Z —p[b, jlp.grad(b, j] | /Z[b]

J

e[b]/Z[0]

p.grad[b, j] exp(s[b, j])/Z[b] + Z.grad[b] exp(s[b, j])
p.arad(p, ] (exp(s[b, 11/ Z18]) + elt] (exp(sls, 1))/ Z10)
plb, j](p-gradb, j] + e[b])

for b,j s.gradlb, j]

This formula shows how hand-written back-propagation methods for “layers”
such as softmax can be more efficient than compiler-generated back-propagation
code. While optimizing compilers can of course be written, one must keep in
mind the trade-off between the abstraction level of the programming language
and the efficiency of the generated code.

Problem 4. Backpropagation through a UGRNN. Equations defining a
UGRNN are given below.



Ri[b, ] (Z W R, ihy 1 [b, ]) + (Z W R, kb, k]) - B[]

i k

Rt [bv j] = ta‘nh(Rt [ba JD

Gilb, ] (Z whel, i]fm[bﬂ) + (Z W=, k][0, k}) — B[j]

k

Gi[b, j] o (Gylb, 41)

ht[bvj] = Gt[ba.ﬂhtfl[l%ﬂ + (]- - Gt[b,]])Rt[bvj]

(a) Rewrite the first equation defining R, using += loops instead of summations
assuming that all computed tensors are initialized to zero.

Solution:

for b, j,i Ry[b, 5] += W[, ilhy 1 [b, ]
for b, j, k Ri[b,j] += WXE[k iz b, k]

for b,j Rib,j] -= BE[j]

(b) Give += loops for the backward computation for your solution to part (a)
using the convention that parameter gradients are averaged over the batch and
where the batch size is B.

Solution:

1 .
for b, j,i W grad[j,i] += B hi—1[b, 4| Ry.grad[b, j]

for b, j,i hy—1.grad[b, j] += W[} i] R;.grad[b, j]

A 1 .
for b, j, k W* % grad[j, k] += 5 x[b, k] R;.grad[b, 5]
R . 1 - .
for b, j B .grad[j] -= B R;.grad(b, j]

Problem 5. Writing framework code. Consider a function ¢ : RY x R® —
R?, in other words a function that takes a vector of dimension d and a vector



of dimension s and yields a vector of dimension s. Given a sequence of vectors
zo, T2, ..., xp with z; € R? we can define a sequence of vectors hg, hi, ..., hr
by the equations

ho = C(q)7.1'070)
hy = c(®,xp,hp—q)for 1 <t <T

When the function c is defined by a neural network with parameters ® where
the same parameters are used at all times ¢. This architecture is called a recur-
rent neural network (RNN) and is used in processesing strings of inputs where
the string has an arbitrary length. In the educational framework EDF we work
with objects where each object has a value attribute and a gradient attribute
each of which have tensor values where the value tensor and the gradient ten-
sor are the same shape. Each object is assigned a value in a forward pass and
assigned a gradient in a backward pass. Suppose that we are given an EDF
procedure CELL which takes as arguments a parameter object Phi and two EDF
objects X and H where the value attribute of the object X is a d-dimensional
vector and the value attribute of the object H is an s-dimensional vector. A call
to the procedure CELL(Phi,X,H) returns an EDF object whose value attribute
is computed in a forward pass in some possibly complex way from the value
attributes of Phi, X and H. Given a sequence X[] of EDF objects whose value
attributes are d-dimensional vectors, and an EDF object ZERO representing the
constant s-dimensional zero vector, write a procedure for constructing the se-
quence of EDF objects representing h1, ho, ..., hr as defined by the above RNN
equations. Your solution can be in Python or informal high level pseudo code.

Solution: We can use the equations given as the definition of the computation
graph if we replace ¢ in the equations with the function CELL. In the folloing
code CELL is a class parameter packages and Phi is a fixed paramter package.
A recursive solution can also be given.

X = list()
H = list()
H[0] = CELL(Phi,X][0],ZERO)
for t in range(1,T)
H[t] = CELL(Phi,X[t],H[t-1])



