
TTIC 31230 Fundamentals of Deep Learning, winter 2019

Backpropagation Problems
Problem 1: Backprogation through a ReLU linear threshold unit.
Consider the computation

y = σ(w>x)

` = L(y)

for w, x ∈ Rd with σ(z) = max(z, 0) (the ReLU activation) and for L(y) an
arbitrary function (a loss function). Let wi denote the ith component of the

weight vector w. Give an expression for ∂`
∂wi

as a function of dL(y)
dy .

Solution: There are various correct ways of writing the answer. The following
corresponds to a backpropagation computation.

d`

dy
=

dL(y)

dy

d`

dwi
=

d`

dy

dy

dwi
=

d`

dy
xi1[wixi ≥ 0]

Problem 3: Backpropagation through softmax. Consider the following
softmax.

Z[b] =
∑
j

exp(s[b, j])

p[b, j] = exp(s[b, j])/Z[b]

An alternative way to compute this is to initialize the tensors Z and p to zero
and then execute the following loops.

for b, j Z[b] += exp(s[b, j])

for b, j p[b, j] += exp(s[b, j])/Z[b]

Each individual += operation inside the loops can be treated independently in
backpropagation.

(a) Give a back-propagation loop over += updates based on the second loop for
adding to s.grad using p.grad (and using the forward-computed tensors Z and
s).

Solution: For b, j s.grad[b, j] += p.grad[b, j] exp(s[b, j])/Z[b]

(b) Give a back-propagation loop over += updates based on the second equation
for adding to Z.grad using p.grad (and using the forward-computed tensors s
and Z).

1



Solution: For b, j Z.grad[b] -= p.grad[b, j] exp(s[b, j])/Z[b]2

(c) Give a back-propagation loop over += updates based on the first equation
for adding to s.grad using Z.grad (and using the forward-computed tensor s).

Solution: For b, j s.grad[b, j] += Z.grad[b] exp(s[b, j])

Problem 4: Optimizing Backpropagation through softmax. Show that
the addition to s.grad shown in problem 1 can be computed using the following
more efficient updates.

for b, j e[b] -= p[b, j]p.grad[b, j]

for b, j s.grad[b, j] += p[b, j](p.grad[b, j] + e[b])

Solution: The updates for problem 1 can be written as

for b Z.grad[b] =
∑
j

−p.grad[b, j] exp(s[b, j])/Z[b]2

=

∑
j

−p[b, j]p.grad[b, j]

 /Z[b]

= e[b]/Z[b]

for b, j s.grad[b, j] = p.grad[b, j] exp(s[b, j])/Z[b] + Z.grad[b] exp(s[b, j])

= p.grad[b, j] (exp(s[b, j])/Z[b]) + e[b] (exp(s[b, j])/Z[b])

= p[b, j](p.grad[b, j] + e[b])

This formula shows how hand-written back-propagation methods for “layers”
such as softmax can be more efficient than compiler-generated back-propagation
code. While optimizing compilers can of course be written, one must keep in
mind the trade-off between the abstraction level of the programming language
and the efficiency of the generated code.

Problem 5. Backpropogation through batch normalization. Consider
the following set of += statements defining batch normalization where all com-
puted tensors are initialized to zero.

For b, j µ[j] += 1
B x[b, j]

For b, j s[j] += 1
B−1 (x[b, j]− µ[j])2

For b, j x′[b, j] += x[b,j]−µ[j]√
s[j]

2



Give backpropagation += (or -=) loops for computing x.grad[b, j], µ.grad[j], and
s.grad[j] from x′.grad[b, j]. The loops should be given in the order they are to
be executed.

Solution:

For b, j x.grad[b, j] +=
x′.grad[b,j]√

s[j]

For b, j µ.grad[j] -=
x′.grad[b,j]√

s[j]

For b, j s.grad[j] -= 1
2 (x[b, j]− µ[j])s[j]−3/2 x′.grad[b, j]

For b, j x.grad[b, j] += 2
B−1 (x[b, j]− µ[j])s.grad[j]

For b, j µ.grad[j] -= 2
B−1 (x[b, j]− µ[j])s.grad[j]

For b, j x.grad[b, j] += 1
B µ.grad[j]

Problem 6. Backpropagation through a UGRNN. Equations defining a
UGRNN are given below.

R̃t[b, j] =

(∑
i

Wh,R[j, i]ht−1[b, i]

)
+

(∑
k

W x,R[j, k]xt[b, k]

)
−BR[j]

Rt[b, j] = tanh(R̃t[b, j])

G̃t[b, j] =

(∑
i

Wh,G[j, i]ht−1[b, i]

)
+

(∑
k

W x,G[j, k]xt[b, k]

)
−BG[j]

Gt[b, j] = σ(G̃t[b, j])

ht[b, j] = Gt[b, j]ht−1[b, j] + (1−Gt[b, j])Rt[b, j]

(a) Rewrite the first equation defining R̃t using += loops instead of summations
assuming that all computed tensors are initialized to zero.

Solution:

for b, j, i R̃t[b, j] += Wh,R[j, i]ht−1[b, i]

for b, j, k R̃t[b, j] += WX,R[k, i]xt[b, k]

for b, j R̃t[b, j] -= BR[j]

3



(b) Give += loops for the backward computation for your solution to part (a)
using the convention that parameter gradients are averaged over the batch and
where the batch size is B.

Solution:

for b, j, i Wh,R.grad[j, i] +=
1

B
ht−1[b, i]R̃t.grad[b, j]

for b, j, i ht−1.grad[b, j] += Wh,R[j, i]R̃t.grad[b, j]

for b, j, k W x,R.grad[j, k] +=
1

B
x[b, k]R̃t.grad[b, j]

for b, j BR.grad[j] -=
1

B
R̃t.grad[b, j]

Problem 7: Writing framework code. Consider a function c : Rd ×Rs →
Rs, in other words a function that takes a vector of dimension d and a vector
of dimension s and yields a vector of dimension s. Given a sequence of vectors
x0, x2, . . ., xT with xt ∈ Rd we can define a sequence of vectors h0, h1, . . ., hT
by the equations

h0 = c(x0, 0)

ht = c(xt, ht−1) for 1 ≤ t ≤ T

When the function c is defined by a neural network the resulting network map-
ping x1, . . ., xT to h0, . . ., hT is called a recurrent neural network (RNN).
a. In the educational framework EDF we work with objects where each object
has a value attribute and a gradient attribute each of which have tensor values
where the value tensor and the gradient tensor are the same shape. Each object
is assigned a value in a forward pass and assigned a gradient in a backward pass.
Suppose that we are given an EDF procedure CELL which takes as arguments a
parameter object Phi and two EDF objects X and H where the value attribute
of the object X is a d-dimensional vector and the value attribute of the object
H is an s-dimensional vector. A call to the procedure CELL(Phi,X,H) returns
an EDF object whose value attribute is computed in a forward pass in some
possibly complex way from the value attributes of Phi, X and H. Given a sequence
X[] of EDF objects whose value attributes are d-dimensional vectors, and an
EDF object ZERO representing the constant s-dimensional zero vector, write a
procedure for constructing the sequence of EDF objects representing h1, h2, . . .,
hT as defined by the above RNN equations. Your solution can be in Python or
informal high level pseudo code.

Solution: We can use the equations given as the definition of the computation
graph if we replace c in the equations with the function CELL.

4



X = list()
H = list()
H[0] = CELL(Phi,X[0],ZERO)
for t in range(1,T)

H[t] = CELL(Phi,X[t],H[t-1])

b. Deep learning systems generally make extensive use of parallel computation
for training. How does the parallel running time of an RNN computation graph
scale with the length T?

Solution: The parallel running time is proportional to T . RNNS are funda-
mentally serial and this is a problem. RNNs have recently been largely replaced
by the transformer architecture.

5


