TTIC 31230, Fundamentals of Deep Learning
David McAllester, Autumn 2024

Einstein Notation

and Convolutional Neural Networks (CNNs)

Einstein Notation

For the representation of general relativity, Einstein introduced
the convention of explicitly writing all indeces of tensors where
repeated indeces in a product of tensors are implicitly summed.

Writing indeces explicitly improves the clarity of the notation
at the expense of not being in correspondence with framework
notation. Most frameworks hide indeces.

This course will focus on conceptual understanding rather than
framework implementations. For conceptual understanding
Einstein notation seems preferable.

Advantages of Einstein Notation

The indeces of tensors generally have types such as “batch
index”, “x coordinate”, “y coordinate” and “neuron index”.

7/ —'—a_‘—’li 14 x

W PPl o oy

r—l] convolution+ReL.U
—~ max |:n-_p]i:a_'.;
fully conr «d+Rel.U

A layer in a CNN has “shape” L|b, x, vy, n| where b is a batch

intex, n is a neuron index, and x and y specify a spacial loco-
tation.

Advantages of Einstein Notation

A layer in a CNN has shape Lb, x,y, n|.

Writing the indeces explicitily typically makes the meaning of
indeces clear and avoids having to remember the somewhat
arbitrary order of the indeces (the order matters for efficiency
of memory access — discussed later).

Einstein Notation

We will use a modified form of Einstein notation where captial
letters are used to denote slices of a tensor. For example:

e L|b, x,y,n| denotes a single (scalar) number.

e Lb, x,y, N| denotes a vector of neuron values.

e L|b, X,Y, N| denotes the entire layer of the bth batch ele-

ment.

Einstein Notation

Frameworks (and NumPy) use C-order (row-major) in laying
out a tensor in memory.

The vector L|b, z, y, N| denotes a contiguous block of memory.

The bth batch layer L|b, X, Y, N| also denotes a (larger) con-
tiguous block of memory.

Vector and matrix operations on contiguous memory better
utilize the memory hierarchy (caching).

Einstein Notation

Following Einstein I will use repeated capital letters in a prod-
uct of tensors to denote summation over those letters.

y=Wz = yfij=> Wi, jlj]
J
= yli] = W[i, J)a[J]
y=2' W = ylj]= Z Wi, 5)a[i]

ylg] = WII, jla|1]

7

Einstein Notation

For vectors x and y and matrices A, B, and C' we have

y=Ax = yli] = Ali, J]z]J]
y=2T A = ylj=Alljall]
A=B'C = Ai,j] = B|K,{C|K,]

In Einstein notation we never use transpose.

Convolution

224 x 224 x3 224 x 224 x 64
/

Fit Eft oo 7 s
i 6= 56 x 206
7 4
r .'.f' o/ 4

.. / r'l

/ 28 x 28 x 512 TxTx512
. y—A 14 x 14 % 512 ,
— £ Eﬁﬁ'Lf 1 x1 X, 1096 1x]1 x 1000
r o)
a /

[‘:I] convolution+ReLU

f' /] max pooling
| fully connected+ReLU

| softmax

A layer is a tensor shape L(b, z,y,n).

[will refer to the index n as a ‘neuron’”. The index n is
called a “feature” or “channel”.

also

Convolution

S y J\
_.,..f’f '*’/ 28
i / '—-—a—}—r“ 14

WH I:E_JU EE’:_[}_' 1 1 ¢ 4096 L * ! x 1000

r:ﬂ convolut “ LU

[A max pnu]im.',
fully connected+4Rel.U

softmax

A

The input image (for each batch element) has three “neurons”
(Red, Green, Blue).

In VGG (above) the input image is 224 x 224 x 3 (for each
batch element). The next two layers are 224 x 224 x 64.

10

Convolution

' J 56 x 256
7 3 J\ XL
* ___,n "/ 28 x 28 x ! Tx512

rd -—,—5—‘
mlm I:[—’- “ LIS P 1% 1 %4096 1x1x 1000
|_J
1
LU/

r:ﬂq mvolution+ReLU

f 1 max pooling
fully connected+ReLU

softmax

A

A given neuron (index) n occurs in every batch element and
every position z, y in the tensor L(b, x,y,n).

Each occurance of that neuron uses the same computation rule
for compurting its response.

11

Convolution

7y D4 - 'l
' .'}"JH 5’ %512

,f =
[’_“‘H ﬁﬁ LeN182 P 1% 1 %4096 1x1x 1000

r_ﬂ convolution+ ReLU
] max

|}nu]‘lll}.’,
fully connected+ReLU

softmax

A given neuron (index) n occurs in every batch element and
every position z, y in the tensor L(b, x,y,n).

The “receptive field” of an occurance of neuron n at position
x, Y 1s a region in the previous layer centered at x and y.

12

A Convolution Layer

Ve
TTFFFT

L L 7T

output
K€+1[nout7 Aﬂj, Aya nin] Lf[ba x,Y, nin] L€+1[b7 L, Y, nout]

Lerl[ba T,Y, nout] — 0 <K€+1[nout7 AX; AY; Nin] Lg[b, T+ AX? Y+ AY; Nin] — B[nout]:

13

2D CNN in PyTorch

conv2d(input, weight, bias, stride, padding, dilation,
groups)

input — tensor (minibatch,in-channels,iH,iW)

weight — filters (out-channels, in-channels/groups kH kW)
bias — tensor (out-channels) . Default: None

stride — Single number or (sH, sW). Default: 1

padding — Single number or (padH, padW). Default: 0
dilation — Single number or (dH, dW). Default: 1

groups — split input into groups. Default: 1

14

Padding

ﬁ_

Jonathan Hui

If we pad the input with zeros then the input and output can
have the same spatial dimensions.

15

Zero Padding in NumPy

In NumPy we can add a zero padding of width p to an image
as follows:

padded = np.zeros(W + 2xp, H + 2x*p)

padded[p:W+p, p:H+p] = x

16

Padding

L}, = Padd(Ly, p)

Lﬁ—l—l[b7 L,Y, nout}

= 0 (Kg_i_l[nout, AX; AY; Nln] Lf[ba T = AX? Y T AY? NIH] o B[nOUtD

If the input is padded but the output is not padded then Ax
and Ay can be non-negative.

17

Padding

Jonathan Hui

With Az and Ay non-negative the result is in the upper left
corner.

18

Reducing Spatial Dimention

22 x 224 x3 224 x 224 x 6d

112 x 128

PR« 2R =512

19

TxTx512

1 %1 x 1000
11 1f . |

14x14x 512 1 % 1 x 4096

@ convolution+ReLU

r':[j max pooling

1 fully connected+ReLU

| softmax

Reducing Spatial Dimensions: Strided Convolution

We can move the filter by a “stride” s for each spatial step.

L€+1[b7 XYy, nout]

= 0 (Kﬁ—i—l[nouta AX: AY; Nin] Lg[b, S*x X+ AX? S*xY + AY? Nin] o B[nOUt])

For strides greater than 1 the spatial dimention is reduced.

20

Reducing Spatial Dimensions: Max Pooling

eeeeee

Ly qlb, 2y, = max Lylb, s« + Az, s*y+ Ay, 1]
Ax, Ay

This is typically done with a stride greater than one so that
the image dimension is reduced.

21

Fully Connected (FC) Layers

220 x 224 x3 224 x 224 x Gd

112 x 128

PRx 28 =512

22

TxTx512

14 x 14 x 512 1% 1x 4096 1x1x 1000

@ convolution+ReLU

Sj max pooling

] fully connected+RelLU

1 softmax

2D CNN in PyTorch

conv2d(input, weight, bias, stride, padding, dilation,
groups)

input — tensor (minibatch,in-channels,iH,iW)

weight — filters (out-channels, in-channels/groups kH kW)
bias — tensor (out-channels) . Default: None

stride — Single number or (sH, sW). Default: 1

padding — Single number or (padH, padW). Default: 0
dilation — Single number or (dH, dW). Default: 1

groups — split input into groups. Default: 1

23

Dilation and Grouping

Dilation is used for “hypercolumns” where higher layers have
the same spatial dimension as the input but each spatial lo-
cation in a higher layer is a whole-image representation of a
region of the input image.

Grouping reduces the computation by limiting the inputs to a
neuron to be values in the same “neuron group” as the input.

Dilation and grouping are rarely used today.

24

Modern Trends

Modern Convolutions use 3X3 filters. This is faster and has
fewer parameters. Expressive power is preserved by increasing
depth with many stride 1 layers.

Max pooling has disappeared.

ResNet and resnet-like architectures are now dominant.

25

L1]55 x 55 x 96
Lo[27 x 27 x 96
L3]27 x 27 x 250]
L4[13 x 13 x 2506
L5[13 x 13 x 384]
Lg[13 x 13 x 384
L:[13 x 13 x 256
Lg[6 x 6 x 256]
Lo[4096]
L1[4096]

s[1000

Alexnet, 2012
Given Input|227, 227, 3]

= ReLU(CONV(Input, ®1, width 11, pad 0, stride 4))

MaxPool(Ly, width 3, stride 2))
ReLU(CONV(Ly, ®3, width 5, pad 2, stride 1))
MaxPool(Ls, width 3, stride 2))
ReLU(CONV(Ly, ®5, width 3, pad 1, stride 1))
ReLU(CONV (L5, ®g, width 3, pad 1, stride 1))
ReLU(CONV (Lg, ®7, width 3, pad 1, stride 1))
MaxPool(L7, width 3, stride 2))

ReLU(FC(Lg, Pg))

ReLU(FC(Ly, ®19))

ReLU(FC(Lyg, ®5)) class scores

First Layers Learn to be Wavelets

27

VGG, 2014

Sofma

FC 1000

3 con, 256

33 conm, 384

3x3 conv, 384

Sl conv, 256

1111 o, 96

0

oLt

AlexNet

FC a005 el conv_B12
Poal 3x3 comy, 512

33 conv, 512

33 come, 512

363 conv, 512

Sl conw, 512

Jx3 conw, 512

Pool

Pool

a3 comv, 512

12

Lin

3 conv,

33 conw, 512

363 conv, 512

w3 conw, 512

33 conv, 512

a3 con, 512

Pool

33 conv, 286

33 conw, 256

3x3 conv, 256

33 conw, 256

Pool

Pool

Ax3 conv, 128

33 conw, 128

33 conv, 128

33 conw, 128

Poal Fool
33 con, 54 3x3 conv, G4
3n3 conv, 54 323 conv, G4

1
|
|
[
|
|
|
|
|
L Pool
|
|
|
|
|
|
l
|
|

LT

gl

VGG16

Stanford CS231

28

VGG19

Inception, Google, 2014

plain net

ar)

ResNet, 2015

Taleems, 64,0 |
¥

poal. 17

[Freamiaz |
¥

pood, i3

a3 oo, =

[

el e, 64

el e, £

¥
Fad e £

[

nd o, B4

nd o, B4

[samow, 178. 72

[hdeemr |

¥
[Caseenvim | |
[»dcewis | 33 oorw 128

¥
33 corw, 118

3u3 corw, 118

[hiwevim | [T
¥
[eamwia | | |
¥
33 cow, 174 a3 gorre, 128
[T [Eawan |,
¥ ¥ ¥
[»dcoewzss | [;-!ww_zso_‘_l e
[dmmas | |
[aeemim | [
¥
[dmmeass | [
¥
[3dconezse | [
¥
[aaSeeew s | [T
[»dcoewzss | | 3u3 oorw 256
¥
3 oo, 256
[Caeieom, 6|
¥
[reseewvase |
33 corw, 256
T o, S10.1T T S50 | i‘
[Chwevsz | sz]| 7
[=amwsz | [
[Eadcowsi | [
[aesemvsiz | I
[3wewsiz | I
v el
¥
[12 1000] [

ResNet

[Kaiming He]

CNN Imagenet Classification

1000 kinds of objects.

Research
Revolution of Depth 262
152 layers
A
\
\
\
\
\
\
11.7
[22 layers | 19 iayers
3' 57 I I | 8 Iayers | 8 layers shallow
ILSVRC'15 ILSVRC'14 ILSVRC'14 ILSVRC'13 ILSVRC'12 ILSVRC'10
ResNet GoogleNet VGG AlexNet
o : ImageNet Classification top-5 error (%)
,w.fc.!;: Kaiming He, Xiangyu Zhang, Shaoging Ren, & Jian Sun. "Deep Residual Learning for Image Recognition”. arXiv 2015

(slide from Kaiming He’s recent presentation)

2016 was 3.0%, 2017 was 2.25%, 2020 was 1.3%

END

