
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2024

Einstein Notation

and Convolutional Neural Networks (CNNs)

1



Einstein Notation

For the representation of general relativity, Einstein introduced
the convention of explicitly writing all indeces of tensors where
repeated indeces in a product of tensors are implicitly summed.

Writing indeces explicitly improves the clarity of the notation
at the expense of not being in correspondence with framework
notation. Most frameworks hide indeces.

This course will focus on conceptual understanding rather than
framework implementations. For conceptual understanding
Einstein notation seems preferable.

2



Advantages of Einstein Notation

The indeces of tensors generally have types such as “batch
index”, “x coordinate”, “y coordinate” and “neuron index”.

A layer in a CNN has “shape” L[b, x, y, n] where b is a batch
intex, n is a neuron index, and x and y specify a spacial loco-
tation.

3



Advantages of Einstein Notation

A layer in a CNN has shape L[b, x, y, n].

Writing the indeces explicitily typically makes the meaning of
indeces clear and avoids having to remember the somewhat
arbitrary order of the indeces (the order matters for efficiency
of memory access — discussed later).

4



Einstein Notation

We will use a modified form of Einstein notation where captial
letters are used to denote slices of a tensor. For example:

• L[b, x, y, n] denotes a single (scalar) number.

• L[b, x, y,N ] denotes a vector of neuron values.

• L[b,X, Y,N ] denotes the entire layer of the bth batch ele-
ment.

5



Einstein Notation

Frameworks (and NumPy) use C-order (row-major) in laying
out a tensor in memory.

The vector L[b, x, y,N ] denotes a contiguous block of memory.

The bth batch layer L[b,X, Y,N ] also denotes a (larger) con-
tiguous block of memory.

Vector and matrix operations on contiguous memory better
utilize the memory hierarchy (caching).

6



Einstein Notation

Following Einstein I will use repeated capital letters in a prod-
uct of tensors to denote summation over those letters.

y = Wx ≡ y[i] =
∑
j

W [i, j]x[j]

≡ y[i] = W [i, J ]x[J ]

y = x> W ≡ y[j] =
∑
i

W [i, j]x[i]

≡ y[j] = W [I, j]x[I ]

7



Einstein Notation

For vectors x and y and matrices A, B, and C we have

y = Ax ≡ y[i] = A[i, J ]x[J ]

y = x> A ≡ y[j] = A[I, j]x[I ]

A = B>C ≡ A[i, j] = B[K, i]C[K, j]

In Einstein notation we never use transpose.

8



Convolution

A layer is a tensor shape L(b, x, y, n).

I will refer to the index n as a “neuron”. The index n is also
called a “feature” or “channel”.

9



Convolution

The input image (for each batch element) has three “neurons”
(Red, Green, Blue).

In VGG (above) the input image is 224 × 224 × 3 (for each
batch element). The next two layers are 224× 224× 64.

10



Convolution

A given neuron (index) n occurs in every batch element and
every position x, y in the tensor L(b, x, y, n).

Each occurance of that neuron uses the same computation rule
for compurting its response.

11



Convolution

A given neuron (index) n occurs in every batch element and
every position x, y in the tensor L(b, x, y, n).

The “receptive field” of an occurance of neuron n at position
x, y is a region in the previous layer centered at x and y.

12



A Convolution Layer

K`+1[nout,∆x,∆y, nin] L`[b, x, y, nin] L`+1[b, x, y, nout]

L`+1[b, x, y, nout] = σ (K`+1[nout,∆X,∆Y,Nin] L`[b, x + ∆X, y + ∆Y,Nin]−B[nout])

13



2D CNN in PyTorch

conv2d(input, weight, bias, stride, padding, dilation,
groups)

input – tensor (minibatch,in-channels,iH,iW)

weight – filters (out-channels, in-channels/groups,kH,kW)

bias – tensor (out-channels) . Default: None

stride – Single number or (sH, sW). Default: 1

padding – Single number or (padH, padW). Default: 0

dilation – Single number or (dH, dW). Default: 1

groups – split input into groups. Default: 1

14



Padding

Jonathan Hui

If we pad the input with zeros then the input and output can
have the same spatial dimensions.

15



Zero Padding in NumPy

In NumPy we can add a zero padding of width p to an image
as follows:

padded = np.zeros(W + 2*p, H + 2*p)

padded[p:W+p, p:H+p] = x

16



Padding

L′` = Padd(L`, p)

L`+1[b, x, y, nout]

= σ (K`+1[nout,∆X,∆Y,Nin] L`[b, x + ∆X, y + ∆Y,Nin]−B[nout])

If the input is padded but the output is not padded then ∆x
and ∆y can be non-negative.

17



Padding

Jonathan Hui

With ∆x and ∆y non-negative the result is in the upper left
corner.

18



Reducing Spatial Dimention

19



Reducing Spatial Dimensions: Strided Convolution

We can move the filter by a “stride” s for each spatial step.

L`+1[b, x, y, nout]

= σ (K`+1[nout,∆X,∆Y,Nin] L`[b, s ∗ x + ∆X, s ∗ y + ∆Y,Nin]−B[nout])

For strides greater than 1 the spatial dimention is reduced.

20



Reducing Spatial Dimensions: Max Pooling

L`+1[b, x, y, i] = max
∆x,∆y

L`[b, s ∗ x + ∆x, s ∗ y + ∆y, i]

This is typically done with a stride greater than one so that
the image dimension is reduced.

21



Fully Connected (FC) Layers

22



2D CNN in PyTorch

conv2d(input, weight, bias, stride, padding, dilation,
groups)

input – tensor (minibatch,in-channels,iH,iW)

weight – filters (out-channels, in-channels/groups,kH,kW)

bias – tensor (out-channels) . Default: None

stride – Single number or (sH, sW). Default: 1

padding – Single number or (padH, padW). Default: 0

dilation – Single number or (dH, dW). Default: 1

groups – split input into groups. Default: 1

23



Dilation and Grouping

Dilation is used for “hypercolumns” where higher layers have
the same spatial dimension as the input but each spatial lo-
cation in a higher layer is a whole-image representation of a
region of the input image.

Grouping reduces the computation by limiting the inputs to a
neuron to be values in the same “neuron group” as the input.

Dilation and grouping are rarely used today.

24



Modern Trends

Modern Convolutions use 3X3 filters. This is faster and has
fewer parameters. Expressive power is preserved by increasing
depth with many stride 1 layers.

Max pooling has disappeared.

ResNet and resnet-like architectures are now dominant.

25



Alexnet, 2012
Given Input[227, 227, 3]

L1[55× 55× 96] = ReLU(CONV(Input,Φ1,width 11, pad 0, stride 4))

L2[27× 27× 96] = MaxPool(L1,width 3, stride 2))

L3[27× 27× 256] = ReLU(CONV(L2,Φ3,width 5, pad 2, stride 1))

L4[13× 13× 256] = MaxPool(L3,width 3, stride 2))

L5[13× 13× 384] = ReLU(CONV(L4,Φ5,width 3, pad 1, stride 1))

L6[13× 13× 384] = ReLU(CONV(L5,Φ6,width 3, pad 1, stride 1))

L7[13× 13× 256] = ReLU(CONV(L6,Φ7,width 3, pad 1, stride 1))

L8[6× 6× 256] = MaxPool(L7,width 3, stride 2))

L9[4096] = ReLU(FC(L8,Φ9))

L10[4096] = ReLU(FC(L9,Φ10))

s[1000] = ReLU(FC(L10,Φs)) class scores



First Layers Learn to be Wavelets

27



VGG, 2014

Stanford CS231

28



Inception, Google, 2014



ResNet, 2015

[Kaiming He]

30



CNN Imagenet Classification

1000 kinds of objects.

2016 was 3.0%, 2017 was 2.25%, 2020 was 1.3%



END


