TTIC 31230, Fundamentals of Deep Learning David McAllester, Winter 2020

Dilation, Hypercolumns, and Grouping

Dilation

A CNN for image classification typically reduces an $N \times N$ image to a single feature vector.

Dilation is a trick for treating the whole CNN as a "filter" that can be passed over an $M \times M$ image with M > N.

An output tensor with full spatial dimension can be useful in, for example, image segmentation.

Dilation

This is called a "fully convolutional" CNN.

Dilation

To implement a fully convolutional CNN we can "dilate" the filters by a dilation parameter d.

 $L_{\ell+1}[b, x, y, j]$

 $= \sigma(W[\Delta X, \Delta Y, I, j]L_{\ell}[b, x + d * \Delta X, y + d * \Delta Y, I] + B[j])$

Vector Concatenation

We will write

$$L[b, x, y, J_1 + J_2] = L_1[b, x, y, J_1]; L[b, x, y, J_2]$$

To mean that the vector $L[b, x, y, J_1 + J_2]$ is the concatenation of the vectors $L_1[b, x, y, J_1]$ and $L_2[b, x, y, J_2]$.

Hypercolumns

For a given image location $\langle x, y \rangle$ we concatenate all the feature vectors of all layers above the point $\langle x, y \rangle$.

$$L \begin{bmatrix} b, x, y, \sum_{\ell} J_{\ell} \end{bmatrix}$$

= $L_0 [b, x, y, J_0]$
:
; $L_{\ell} \left[b, \left[x \left(\frac{X_{\ell}}{X_1} \right) \right], \left[y \left(\frac{Y_{\ell}}{Y_0} \right) \right], J_{\ell} \right]$
:
; $L_{\mathcal{L}-1} [b, J_{\mathcal{L}-1}]$

Grouping

The input features and the output features are each divided into G groups.

 $L_{\ell+1}[b, x, y, J] = L^0_{\ell+1}[b, x, y, J/G]; \cdots; L^{G-1}_{\ell+1}[b, x, y, J/G]$ where we have G filters $W^g[\Delta X, \Delta Y, I/G, J/G]$ with

$$L^g_{\ell+1}[b, x, y, j]$$

 $= \sigma(W^{g}[\Delta X, \Delta Y, I/G, j]L^{g}_{\ell}[x + \Delta X, y + \Delta Y, I/G, j] - B^{g}[j])$

This uses a factor of G fewer weights.

END