
TTIC 31230 Fundamentals of Deep Learning, winter 2019

CNN Problems
In these problems, as in the lecture notes, capital letter indeces are used to
indicate subtensors (slices) so that, for example, M [I, J ] denotes a matrix while
M [i, j] denotes one element of the matrix, M [i, J ] denotes the ith row, and
M [I, j] denotes the jth collumn.

We also adopt the convention, similar to true Einstein notation, that repeated
capital indeces in a product of tensors are implicitly summed. We can then write
the inner product e[w, I]>h[t, I] as e[w, I]h[t, I]. Using this implicit summation
notation we can avoid ever using transpose.

Problem 1. Einstein Notation.
Suppose that at each time t from 1 to T we have a matrix Wt ∈ RIJ . Suppose we
are given an initial vector x0. We define the vectors x1, . . . xT by the equation
(1) xt+1 = Wtxt

(Wtxt is the matrix Wt times the vector xt).
We can represent the vector xt as a tensor x[t, j] and represent the matrix Wt

as a tensor W [t, i, j].

part a: Rewrite equation (1) in terms of the tensors using summation notation.

part b: Rewrite equation (1) in terms of the tensors using Einstein notation
where summation is represented by repeating a capital letter index.

Problem 2. Counting Floating Point Operations. Consider convolving
a kernel K[nout,∆x,∆y, nin] with thresholds B[nout] on a layer L[b, x, y, nin]
where B, X, Y,Nout, Nin,∆X, ∆Y are the number of possible values for b,
x, y, nout, nin, ∆x and ∆y respectively. How many floating point multiplies
are required in computing the convolution on the batch (without any activation
function)?

Problem 3. 3D Convolutions. Suppose that we want a video CNN pro-
ducing layers of the form L[b, x, y, t, n] which are the same as the layers of an
image CNN but with an additional time index. Write the equation for comput-
ing L`+1[b, x, y, t, j] from the tensor L`[B,X, Y, T, I]. Your filter should include
an index ∆t and handle a stride s applied to both space and time. Use the
repeated index notation for summation.

Problem 5. Incorporating Scale Invariance. Images have translation
invariance — a person detector must look for people at various places in the
image. Translation invariance is the motivation for convolution — all places in
the image are treated the same.

Images also have some degree of scale invariance — a person detector must look
for people of different sizes (near the camera or far from the camera). We would
like to design a deep architecture that treats all scales (sizes) the same just as
CNNs treat all places the same.

1



Consider a batch of input images L0,d[b, x, y, n] where d = 2k is the spacial
dimension of x and y and n ranges over the three color values red, green, blue.
To capture scale invariance will compute a set of layers L`,d with 0 ≤ ` ≤ `max

and d a power of 2 with 4 ≤ d ≤ dmax where dmax is the spacial dimention
of the input images. We set dmin = 4 so as to allow 3 × 3 convolution kernels
to be applied to the lowest spacial resolution. The output layer, say for image
classificication, is L`max,dmin [b, x, y, n].

We first define L0,d[b, x, y, n] to be a layer in an “image pyramid” constructed
by successively down-sampling the images by a factor 2.

L0,d/2[b, x, y, n] =
1

4

(
L0,d[b, 2x, 2y, n] + L0,d[b, 2x + 1, 2y, n]
+L0,d[b, 2x, 2y + 1, n] + L0,d[b, 2x + 1, 2y + 1, n]

)
We next define L`,dmax

[b, x, y, n] by 3 × 3 convolutions that do not change the
image dimension.

L`+1,dmax [b, x, y, n] = σ(K`+1[nout,∆X,∆Y,Nin]L`,dmax [b, x+∆X, y+∆Y,Nin]−B`+1[nout])

For d < dmax give an equation for computing L`+1,d[b, x, y, nout] as the re-
sult of a linear threshold neuron taking inputs from both L`,d[b, x, y, n] and
L`,2d[b, x, y, n] using the same kernel K`+1[nout,∆x,∆Y, nin] for both inputs.
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