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ReLu

ReLu(x) = max(x, 0)

The ReLu does not saturate at positive inputs.
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Problems with Depth:

Repeated Multiplication by Network Weights

Consider

y =
∑
i

w[i]x[i] = W [I ]x[I ]

If the weights are large the activations will grow exponentially
in network depth.

If the weights are small the actvations will become exonentially
small.
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Problems with Depth:

Repeated Multiplication by Network Weights

Exploding activations cause exploding gradients.

y += w[i]x[i]

w.grad += y.grad x[i]

The size of w[i].grad is proportional to x[i]
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He Initialization

Initialize weights to preserve zero-mean unit variance value
distributions.

y =
∑
i

w[i]x[i]

If we assume xi has zero mean and unit variance then we want
y to have zero mean and unit variance (over random training
points).

He initialization randomly draws w[i] from

N (0, σ2) σ =
√

1/N
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He Initialization

y =
∑
i

w[i]x[i]

w[i] ∼ N (0, σ2) σ =
√

1/N

Assuming independence we have that y has zero mean and
unit variance.

6



Batch Normalization

For CNNs we convert a tensor L[b, x, y, n] to L̃[b, x, y, n] as
follows.

L̂[x, y, n] =
1

B

∑
b

L[b, x, y, n]

σ̂[x, y, n] =

√
1

B − 1

∑
b

(L[b, x, y, n]− L̂[x, y, n])2

L̃[b, x, y, n] =
L[b, x, y, n]− L̂[x, y, n]

σ̂[x, y, n]



Spatial Batch Normalization

L̂[n] =
1

BXY

∑
b,x,y

L[b, x, y, n]

σ̂[n] =

√√√√ 1

BXY − 1

∑
b,x,y

(L[b, x, y, n]− L̂[n])2

L̃[b, x, y, n] =
L[b, x, y, n]− L̂[n]

σ̂[n]



Layer Normalization

L̂[b, n] =
1

XY

∑
x,y

L[b, x, y, n]

σ̂[b, n] =

√
1

XY − 1

∑
x,y

(L[b, x, y, n]− L̂[b, n])2

L̃[b, x, y, n] =
L[b, x, y, n]− L̂[b, n]

σ̂[b, n]



Adding an Affine Transformation

L̆[b, x, y, n] = γ[n]L̃[b, x, y, n] + β[n]

Here γ[n] and β[n] are parameters of the batch normalization.

This allows the batch normlization to learn an arbitrary affine
transformation (offset and scaling).

The affine transformation can undo the normaliztion but using
ReLu activations the normalized value remains independent of
scaling the weights and bias terms (thresholds) of the layer.



Residual Connections
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Deep Residual Networks (ResNets) by Kaiming He 2015

A residual connections con-
nects input to output directly
and hence preserves gradi-
ents.

ResNets were introduced in
late 2015 (Kaiming He et al.)
and revolutionized computer
vision.



Residual Connections in CNNs

L̃`+1[B,X, Y,Nout]

= Conv(K`+1[Nout,∆X,∆Y,Nin], B`+1[Nout], L`[B,X, Y,Nin])

L`+1[B,X, Y,Nout] = L`[B,X, Y,Nin] + L̃`+1[B,X, Y,Nout]

Capital letters indicate that complete tensors.

These equations require that the spacial dimension remains
the same (stide 1) and Nout = Nin.



Residual Connections in CNNs

The residual connection typically skips over several layers, or
in transformers, a complex multi-level network.

L̃`+1[B,X, Y,Nout]

= Conv(K`+1[N,∆X,∆Y,N ], B`+1[N ], L`[B,X, Y,N ])

L̃`+2[B,X, Y,N ]

= Conv(K`+1[N,∆X,∆Y,N ], B`+1[N ], L`+1[B,X, Y,N ])

L`+2[B,X, Y,N ] = L`[B,X, Y,N ] + L̃`+2[B,X, Y,N ]



Handling Spacial Reduction

Spacial reduction and neuron expansion is done without con-
volution.

L`+1[b, x, y, j] =

{
L`[b, s ∗ x, s ∗ y, j] for j < N`
0 otherwise

Residual connections are still placed around all convolutions.
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Resnet32

[Kaiming He]



Deeper Versions use Bottleneck Residual Paths

We reduce the number of neurons to Nbottle < N before doing
the convolution.

U [B,X, Y,Nbottle] = Conv(KU [Nbottle, 1, 1, Nin], L`[B,X, Y,N ])

V [B,X, Y,Nbottle] = Conv(KV [Nbottle, 3, 3, Nbottle], U [B,X, Y,Nbottle])

R[B,X, Y,N ] = Conv(KR[N, 1, 1, Nbottle], V [B,X, Y,N ])

L`+1 = L` + R
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A General Residual Connection

y = x + R(x)

where R(x) has the same shape as x.
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Improving Trainability
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END


