
TTIC 31230 Fundamentals of Deep Learning, 2020

Problems For Trainability.

Problem 1. Adjusting Shape for Residual Connections. Consider a
computation function f that takes a tensor (such as a layer in a CNN) and
returns a tensor of a potentially different shape (such as an image tensor of
reduced dimension). We can write a residual network for this case as

L1 = A1(L0) + f1(L0)

L2 = A2(L1) + f2(L1)

...

LN = AN (LN−1) + fN (LN−1)

Here the function An adjust the shape of the previous layer to match the shape
of fn(Ln−1). Suppose that in a CNN we have that fn(Ln+1) has the same
spatial dimension but fewer features than Ln−1.

a. Write a tensor expression for an adjustment function An in this case where
the dimension is reduced by multiplying the larger dimension feature vector by
a matrix.

b. Write a tensor expression for reducing the number of features simply by
selecting some features and ignoring others.

c. A standard motivation for residual connections is that there is a direct
gradiant path from the loss to the first layer of the network. Which of the
adjustment methods of parts I and II preserve this property?

d. Does the shape adjustment given on slide 15 of the notes preserve a direct
path from the loss to the first layer?

Problem 2. Improving Trainability with Multiple Loss Heads. Con-
sider a regression problem where we want to predict a scalar value y from a vector
x. Consider the L-layer perceptron for this problem defined by the following
equations which compute hidden layer vectors h1[I], . . . , hL[I] and predictions
ŷ1, . . . , ŷL where the prediction ŷ` is done with a linear regression on the hidden
vector h`[I].

1



h0[i] = x[i]

...

h`+1[i] = σ(Wh,h
`+1[i, I]h`[I]−Bh,h

`+1[i])

ŷ`+1 = Wh,p
`+1[I]h`+1[I]−Bh,y

`+1

...

Loss =

L∑
`=1

(y − ŷ`)2

Each term (y− ŷ`)2 is called a “loss head” and defines a loss on each prediction
ŷ`. Note, however, that there is only one scalar loss minimized by SGD which
is the sum of the losses of each loss head.

(a) Explain why these multiple loss terms might improve the ability of SGD to
find a useful L-layer MLP regrssion ŷL when L is large.

Solution: SGD on deep networks with the loss term only occuring at the
final layer is not generally effective because the lower layers never get meaninful
gradients. Placing loss functions near the lower layers will cause the lower hidden
layers to have meaningful gradients and produce informative features.

(b) As a function of L (ignoring the dimension size I) what is the order of run
time for the backpropagation procedure. Explain your answer.

Solution: It is O(L) — linear in L. Backpropagation loops over the assignments
of the program and takes time proportional to the size of the program. Back-
propagation over the final sum of losses produces a gradient for each prediction
ŷ` which can be used as we back-propagate over the earlier assignments.

(c) Rewrite the above MLP equations to use residual connections rather than
multiple heads. There are multiple correct solutions differing in minor details.
Pick one that seems good to you.

Solution:

h0[i] = x[i]

...

h̃`+1[i] = σ(Wh,h
`+1[i, I]h`[I]−Bh,h

`+1[i])

h`+1[i] = h̃`+1[i] + h`[i]

...

ŷ = Wh,y[I]hL[I]−Bh,y

Loss = (y − ŷ)2

2



Problem 3. Weight Initialization. This problem is on initialization. Con-
sider a single unit defined by

y = f(W [I]x[I]−B) = f

((∑
i

W [i]x[i]

)
−B

)
where B is initialized to zero and f is an activation function such as a sigmoid
or ReLU. The vector x is a random variable determined by a random draw of a
training example. Assume that the components of x are independent and that
each component has zero mean and unit variance. Suppose that we initialize
each weight in W from a distribution with zero mean and variance σ2 and that
the distribution is symmetric about zero — (the probability that w[i] = z equals
the probability that w[i] = −z). For example, x[i] might be distributed as a zero-
mean unit-variance Gaussian. Consider y =

∑
i W [i]x[i] as a random variable

defined by the distribution on x and the independent random distribution on
W . Recall that the variance σ2 of a sum of independent random variables is the
sum of the variances and the variance of a product of zero mean independent
random variables is the product of the variances.

(a) What value of σ for W [i] gives zero mean and unit variance for y if the
vectors w[I] and x[I] have dimension d? Show your derivation.

Solution: Let σ2 be the variance of x[i]. We then have that the variance of∑
iW [i]x[i] is

∑
i σ

2 = dσ2. Setting dσ2 equal to 1 gives

σ =
1√
d

(b) For a sigmoid activation function what is the mean of u.

Solution: We are given that the probability that W [i] = z is the same as the
probability of w[i] = −z. This implies that for a given value of x[i] we have that
the probability that w[i]x[i] = z equals the probability that w[i]x[i] = −z. This
further implies that, for a given value y, the probability that

∑
i w[i]z[i] = y

equals the probability that
∑

i w[i]x[i] = −y. So the input to the sigmoid is dis-
tributed symmetrically about 0. Since the sigmoid function is itself symmetric
about 0, we get that the expected value of the output of the sigmoid is its value
at zero which is 1/2.

(c) For a sigmoid activation function is the variance of u larger than, equal to,
or smaller than the variance of y?

Solution: The variance is smaller. To show this it suffices to show that the
slope of the sigmoid function is everywhere less than 1. The slope is largest at
the input zero. The sigmoid function is

f(z) =
1

1 + e−y

3



The slope is

f ′(y) =
e−y

(1 + e−y)2

which equals 1/4 at y = 0.

(d) What is the largest possible variance of the output of a sigmoid?

Solution: The larest valriance occurs when y = ∞ with probability 1/2 and
y = −∞ with probability 1/2 ;-). Tn this case f(y) is 0 with probability 1/2
and 1 with probability 1/2. Which gives a variance of 1/4.

Problem 4. Counting Multiplications in Bottleneck Layers. Consider
a bottleneck multi-layer perceptron (MLP) with residual connections defined as
follows where Nbottle is smaller than Nin = Nout.

L̃`[nbottle] = ReLU(W b,1
` [nbottle, Nin]L`[Nin]−Bb,1

` [nbottle])

L̂`[nout] = ReLU(W b,2
` [nout, Nbottle]L̃`[Nbottle]−Bb,2

` [nout])

L`+1[n] = L`[n] + L̂`[n]

(a) What is the number of multiplications done by this network as a function of
Nin = Nout = N , Nbottle and the number of layers L (including the input layer)?
Under what conditions does this give fewer multiplications than the standard
MLP with one matrix between layers?

Solution: The number of multiplications is 2NNbottle(L − 1). For a standard
MLP (with no botleneck) the number of multiplications is N2(L − 1). The
bottleneck layer has fewer multiplications for Nbottle < N/2.

(b) We now consider introducing a multiplicative constant γ into the residual
connection.

L`+1[n] = γ(L`[n] + L̂`[n])

If the network is initialized such that each response of L`[n] and L̂[n] has zero
mean and unit variance, and are assummed to be independent, what value of γ
gives that h[`+ 1, j] has zero mean and unit variance.

Solution: 1/
√

2

(c) The main advantage of a stack of residual connections is that there is direct
additive path from the loss to each layer of the stack, including the input layer.
Give a reason why the introduction of the constant γ < 1 as in part (b) might
be damaging to the optimization of the lower layers of the residual stack.

4



Solution: When we introduce γ < 1 as in (b) the gradient update on the
bottom layer is reduced by γL−2. This could harm the learning along the direct
connection between the loss and the first layer of the network.

Problem 5. RNN run time. Consider an autoregressive RNN neural lan-
guage model with PΦ(wt+1|w1, . . . , wt) defined by

PΦ(wt|w1, . . . , wt−1) = softmax
wt+1

e[wt, I]h[t− 1, I]

Here e[w, I] is the word vector for word w, h[t, I] is the hidden state vector at
time t of a left-to-right RNN, and as described above e[w, I]h[t, I] is the inner
prodcut of these two vectors where we have assumed that they have the same
dimension. For the first word w1 we have an externally provided initial hidden
state h[0, I] and w1, . . . , w0 denotes the empty string. We train the model on
the full loss

Φ∗ = argmin
Φ

Ew1,...,wT∼Train − lnPΦ(w1, . . . , wT )

= argmin
Φ

Ew1,...,wT∼Train

T∑
t=1

− lnPΦ(wt|w1, . . . , wt−1)

What is the order of run time as a function of sentence length T for the back-
propagation for this model run on a sentence w1, . . . , wT ? Explain your answer.

Solution: The backprogation takes O(T ) time (not O(T 2)). The model con-
sists of O(T ) objects each of which performs a single forward operation and a
single backward operation. As the backpropagation procedes more of the loss
terms in the sum over t get incorporated. It should be noted that RNNs take
time linear in the sequence length even on parallel hardware. The transformer,
on the other hand, takes constant time in parallel independent of the length of
the sequence. This is a major advantage of the transformer.

5


