
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Fall 2023

Language Modeling

Recurrent Neural Networks

Machine Translation

The Transformer

1

Language Modeling

The recent progress on NLP benchmarks is due to pretraining
on language modeling.

Language modeling is based on unconditional cross-entropy
minimiztion.

Φ∗ = argmin
Φ

Ey∼Pop [− lnPΦ(y)]

In language modeling y is a sentence (or fixed length block of
text).

2

Language Modeling

Let V be some finite vocabulary of tokens.

Each token is a character sequence that can be used as a part
of a rare word such a name in a foreign language. Most English
words are a single token.

Tokens typically do not cross word boundaries.

We are interested in probability distributions over V ∗ (the
finite sequences of tokens).

3

Language Modeling

Let Pop be a population distribution over sequences of tokens.

We want to train a model PΦ(y) for token sequences y

Φ∗ = argmin
Φ

Ey∼Pop [− lnPΦ(y)]

A structured object, such as a token sequence or an image, has
an exponentially small probability.

4

Autoregressive Models

An autoregressive model uses the chain rule to represent a dis-
tribution on sequences in terms of the conditional probability
for each token given the earlier tokens tokens.

PΦ(w0, w1, · · · , wT) =

T∏
t=0

PΦ(wt | w0, . . . , wt−1)

Modern language models are actually defining probability dis-
tributions on long sequences (thousands of tokens).

5

The end-of-squence token

We want to define a probability distribution over sentences of
different length.

For this we require that each sentence is “terminated” with an
end of sequence token <EOS>.

6

Training

PΦ(w0, w1, · · · , wT) =

T∏
t=0

PΦ(wt | w0, . . . , wt−1)

For training we need to compute the log loss on a training
example.

The log loss on a sequence is the sum of the log losses for each
token generation.

7

Generation

PΦ(w0, w1, · · · , wT) =

T∏
t=0

PΦ(wt | w0, . . . , wt−1)

We can generate from an autoregressive language model by
generating one word at a time.

To generate we sample from a probability distribution over
the first word. Once this word is generated we compute a
probability distribution for the second word and so on.

8

Word Embeddings

Each word w is associated with a vector e(w)[I] called the
embedding of word w.

The matrix e can be viewed as a dictionary assigning each
word w the vector e(w)[I].

9

Recurrent Neural Network (RNN) Language Modeling

[Christopher Olah]

A typical RNN neural language model has the form

PΦ(wt | w0, · · · , wt−1) = softmax
wt

e(wt)[I]h[t− 1, I]

10

Vanilla RNNs

[Christopher Olah]

A Vanilla RNN uses two-input linear threshold units.

h[t, j] = σ
(
W h,h[j, I]h[t− 1, I] + W x,h[j,K]x[t,K]−B[j]

)

Exploding and Vanishing Gradients

If we avoid saturation of the activation functions then we get
exponentially growing or shrinking eigenvectors of the weight
matrix.

Note that if the forward values are bounded by sigmoids or
tanh then they cannot explode.

However the gradients can still explode.

12

Exploding Gradients: Gradient Clipping

We can dampen the effect of exploding gradients by clipping
them before applying SGD.

W.grad′ =

W.grad if ||W.grad|| ≤ nmax

nmax W.grad/||W.grad|| otherwise

See torch.nn.utils.clip grad norm

13

Time as Depth

[Christopher Olah]

We would like the RNN to remember and use information from
much earlier inputs.

All the issues with depth now occur through time.

However, for RNNs at each time step we use the same model
parameters.

In CNNs at each layer uses its own model parameters.

14

“Residual Connections” Through Time

[Christopher Olah]

We would like to have residual connections through time.

However, we have to handle the fact that the same model
parameters are used at every time step.

Gated RNNs

[Christopher Olah]

h[t, j] = Gt[t, j]h[t−1, j] + (1−G[t, j])R[t, j]

This is analogous to a residual connection.

Rather than add the “next layer” R[t, j] to the input h[t−
1, j] as in a residual connection, we take a convex combination
determined by a computed “gate” G[t, j] ∈ [0, 1].

Update Gate RNN (UGRNN)

R[t, j] = tanh
(
W h,R[j, I]h[t−1, I] + W x,R[j,K]x[t,K]−BR[j]

)
G[t, j] = σ

(
W h,G[j, I]h[t−1, I] + W x,G[j,K]x[t,K]−BR[j]

)
h[t, j] = G[t, j]h[t−1, j] + (1−G[t, j])R[t, j]

Φ = (W h,R,W x,R, BR,W h,G,W x,G, BG)

tanh(x) ∈ (−1, 1) σ(x) ∈ (0, 1)

17

Hadamard product

h[t, j] = G[t, j]h[t−1, j] + (1−G[t, j])R[t, j]

is sometimes written as

h[t, J] = G[t, J]�h[t−1, J] + (1−G[t, J])�R[t, J]

� is the Hadamard product (componentwise product) on vec-
tors.

18

Gated Recurrent Unity (GRU) by Cho et al. 2014

19

Long Short Term Memory (LSTM)

[LSTM: Hochreiter&Shmidhuber, 1997]

20

UGRNN vs. GRUs vs. LSTMs

[Collins, Dickstein and Sussulo 2016] found that the number
of parameters is more important than the choice of RNN ar-
chitectures.

21

bidirectional RNNS

22

Multi-Layer RNNs

Modern versions would stack layers using residual connections.

23

Machine Translation

w0, . . . , wTin
⇒ w̃0, . . . , w̃Tout

Translation is a sequence to sequence (seq2seq) task.

Sequence to Sequence Learning with Neural Net-
works, Sutskever, Vinyals and Le, NeurIPS 2014, arXiv Sept
10, 2014.

24

Machine Translation

We define a model

PΦ
(
w̃0, . . . , w̃Tout

| w0, . . . , wTin

)

Φ∗ = argmin
Φ

E〈x, y〉∼Pop [− lnPΦ(y|x)]

25

Translation Using Thought Vectors

The final state of a right-to-left (backward) RNN is viewed
as a “thought vector” representation of the input sentence.

We use the thought vector for the niput sentence as the initial
hidden state of a left-to-right (forward) RNN language
model generating the output sentence.

Computing the input thought vector backward provides a good
start to the forward generation of the output.

26

The Introduction of Attention

Neural Machine Translation by Jointly Learning to
Align and Translate Dzmitry Bahdanau, Kyunghyun Cho,
Yoshua Bengio, ICLR 2015 (arXiv Sept. 1, 2014)

27

Attention

As we generate each word in the output translation we compute
an attention over the input.

Intuitively, we want to define an “alignment” between the
words in the output and the words in the input.

In modern terminology this is calles a “cross attention” — one
thing (the output) attending to a different thing (the input).

This is different from the “self attention” used in transformers.

28

Encoder-Decoder Models with Cross-Attention

Let hthought be the thought vector for the input sentence.

Let hin(tin) be a sequence of vectors generated by the encoder
for the sequence of input words.

Let hout(tout) be a thought vector for the first tout words in
the output sentence.

Attention α[tout, tin] = softmaxtin e(wtout)[N] hin(tin)[N]

Weighted Sum : h̃out(tout) = α[tout, Tin] hin(Tin)

generate : wtout+1 ∼ PΦ(wtout+1 |hthought, hout(tout), h̃out(tout))

29

Cross Attention in Image Captioning

We can treat image captioning as translating an image into a
caption.

In translation with attention involves an attention over the
input aligning output words with positions in the input.

For each output word we get an attention over the image po-
sitions.

30

Attention in Image Captioning

Xu et al. ICML 2015

31

The Transformer: Self Attention

Attention is All You Need, Vaswani et al., June 2017

We replace the RNNs with self attention.

For the encoder we will have a “residual stack” h0,in(tin), . . . , hN,in(tin).

Set h0,in(tin) = e(wtin); pos(ttin).

Here semicolon denotes vector concatenation and pos(tin) is a
“position encoding” for the position t.

32

The Residual Pathway

33

Parallel Layer Computation

However, in the transformer we can compute the layerL`+1[T, J]
from L`[T, J] in parallel.

This is an important difference from RNNs which compute
sequentially over time.

In this respect the transformer is more similar to a CNN than
to an RNN.

34

Self-Attention

The fundamental innovation of the transformer is the self-
attention layer.

For each position t in the sequence we compute an attention
over the other positions in the sequence.

35

Transformer Heads

There is an intuitive analogy between the Transformer’s self
attention and a dependency parse tree.

In a dependency parse cibsists if edges between words labeled
with grammatical roles such as “subject-of” or “object-of”.

The self attention layers of the transformer we have “heads”
which can be viewed as labels for dependency edges.

Self attention constructs a tensor α`[k, t1, t2] — the strength
of the attention weight (edge weight) from t1 to t2 with head
(label) k at layer ` of the network.

36

Query-Key Attention

For each head k and position t we compute a key vector and
a query vector with dimension I typically smaller than dimen-
sion J .

Query`+1[k, t, i] = W querry
`+1 [k, i, J]L`[t, J]

Key`+1[k, t, i] = W key
`+1[k, i, J]L`[t, J]

α`+1[k, t1, t2] = softmax
t2

1√
I

Query`+1[k, t1, I]Key`+1[k, t2, I]

37

Computing the Self-Attention Layer

Value`+1[k, t, i] = WV
`+1[k, i, J]L`[t, J]

h̃`+1[k, t, i] = α[k, t, T]Value[k, T, i]

ĥ`+1[t, C] = h̃`+1[0, t, I]; · · · ; h̃`+1[K − 1, t, I]

LSA`+1[t, j] = W 0
`+1[j, C]ĥ`+1[t, C]

Here semicolon denotes vector concatenation.

38

The Residual Pathway

We have now defined the self-attention layer.

39

Feed-Forward Layers

The feed-forward layers apply a two-level multi-layer percep-
tron (MLP) to the vector at each time position independently.

h`+1[t, i] = ReLU(WFF1
`+1 [i, J] L`[t, J]−BFF1

`+1 [i])

L`+1[t, j] = WFF2
`+1 [j, I] h`+1[t, I]−BFF2

`+1 [j]

40

The Transformer

41

Recent Trends

LoRA: Low-Rank Adaptation of Large Language Models, Huet
al. (June 2021).

Efficiently Modeling Long Sequences with Structured State
Spaces Albert Gu net al. (August 2022)

Mamba: Linear-Time Sequence Modeling with Selective State
Spaces Albert Gu and Tri Dao, (December 2023)

42

Zambda2-7B (October 14, 2024)

Zyphra is excited to release Zamba2-7B, a state-of-
the-art small language model. At the 7B scale, we out-
perform the leading models of Mistral, Google’s Gemma
and Meta’s Llama3 series in both quality and performance
...

43

Zamba2

44

END

