
TTIC 31230 Fundamentals of Deep Learning, 2020

Problems For Language Modeling, Translation and Attention.

Problem 1. Transformers as Dependency Parsers. A dependency parse
is a labeled directed graph on the words in a sentence. For example,

In this example the edges are labeled with nsubj, dobj, det, nmod and case.
A dependency parse determines a tree with a root node labeled as root and
with the other nodes labeled with the words of the sentence. This tree structure
defines a set of phrases where each phrase consists of words beneath a given
node of the tree.

(a) Let k range over the set of possible labels in a dependency parse. There
is typically a small fixed set of such labels. If we interpret k has a transformer
head, what attention α(dobj,prefer, w) over the words w attended from the
word prefer by the head dobj corresponds to the above dependency parse?

(b) A dependency parse rarely has two edges leading from a given word that
both have the same label. GTP-3 has 96 heads in each of 96 self-attention
layers. It might be reasonable that, with so many heads, each head chould
be encouraged to focus its attention on a small number of words (as would be
typical in a dependency parse). Define a loss Lfocus that can be combined with
the log loss term of the language model such that Lfocus encourages each head
to focus on a small number of words. Write the total loss as a weighted sum of
the language model loss LLM and Lfocus. You do not need to define LLM, just
Lfocus.

(c) Dependency edges tend to be between nearby words. Repeat part (b) but
for a loss Lnear which encourages the attention α[`, k, t1, T2] to be focused near
t1. The loss Lnear should be “robust” in the sense that it has a maximum value
that is independent of the length T of the transformer window. This should
allow some “outlier” long distance attentions which are needed for coreference.

(d) State the “universalty assumption” under which the “loss shaping” terms
of (b) and (c) above only hurts the langauge modeling performance. Also give
a plausibility argument that these terms might help in practice.

Problem 2. Adjusting Temperature for Dimension. For a typical lan-
guage model the softmax operation defining the probablility P (wt+1 | w1, . . . , wt)
has the form

α[`, t, w] = softmax
w

h[`, t, I]e[w, I]

1



We now consider adding a “temperature parameter” β to this softmax.

α[`, t, w] = softmax
w

β h[`, t, I]e[w, I] (1)

(a) Assume that the components of the vector h[t, I] are independent with
zero mean and unit variance. Also assume that that the word vectors have
been initialized so that the components of the vector e[w, I] are zero mean and
unit variance. What initial value of β gives the result that the inner product
βh[t, I]e[w, I] has zero mean and unit variance. Explain your answer. (Use I to
denote the dimension of the vectors h[t, I] and w[w, I].)

(b) Relate your answer to (a) to the equation used for the self attention α(k, t1, t2)
computed in the tansformer.

Problem 3. Parameterizing Inner-Product This problem is on transformer
self-attention. Modern classification problems tend to use a softmax operation
of the form

P (y|h) = softmax
y

h>e(y) (2)

where h is a vector computed by the neural network and e(y) is a vector em-
bedding for the label y. Many early systems would insert a parameter matrix
so that we have

P (y|h) = softmax
y

h>We(y) (3)

However, it was generally observed that additional parameterization of the inner
product operation does not improve the results. The vector h and the embedding
e(y) can be learned to be such that the standard inner product works well.
However, the attention softmax of the transformer (3) does not use a naive inner
product.

(a) Explain why we cannot replace (3) with a naive inner product of L[`, t1, J ]
and L[`, t2, J ] as in (2).

(b) Rewrite the transformer self-attention equation (2) in the form of (3) where
the matrix W in (3) is replaced by by a matrix defined in terms of WK and
WQ.

Problem 4. Repetition at Low Temperatures. For low temperatures and
modest-sized language models we tend to generate infinitely repeating infinite
sentences. We can get insight into this phenomenon by considering a trigram
model where each word is predicted from the two preceding words using a condi-
tional probability PΦ(wt+2|wt, wt+1). We will assume trained word embeddings
e(w) for each word w and a neural network predictor of the form

P (wt+1|wt, wt+1) = softmax
wt+2

β hΦ(e(wt), e(wt+1))> e(wt+2)

where hΦ is some arbitray neural network returnnig a quey vector and β is a
temperature parameter. We will assume that the model has been trained with β

2



held fixed at 1 but that we will generate from this trigram model with different
values of β. What degenerate behavior are we guaranteed to see if we sample
at zero temperature? Explain your answer.

Problem 5. Eliminating the Key Matrix. The self-attention in the trans-
former is computed by the following equations.

Query`+1[k, t, i] = WQ
`+1[k, i, J ]L`[t, J ]

Key`+1[k, t, i] = WK
`+1[k, i, J ]L`[t, J ]

α`+1[k, t1, t2] = softmax
t2

[
1√
I

Query`+1[k, t1, I]Key`+1[k, t2, I]

]
Notice that here the shape of WQ and WK are both [K, I, J ]. We typically
have I < J which makes the inner product in the last line an inner product of
lower dimensional vectors.

(a) Give an equation computing a tensor W̃Q[K,J, J ] computed from WQ and
WK such that the attention α(k, t1, t2) can be written as

α`+1(k, t1, t2) = softmax
t2

[
L`[t1, J1]W̃Q[k, J1, J2]L`[t2, J2]

]
For a fixed k we have that WQ[k, I, J ] and WK [k, I, J ] are matrices. We want
a matrix W̃Q[k, J, J ] such that the attention can be written in matrix notation
as h>1 W̃

Qh2 where h1 and h2 are vectors and W̃Q is a matrix. You need write
this matrix W̃Q in terms of the matrices for WQ and WK . But write your final
answer in Einstein notation with k as the first index.

(b) Part (a) shows that we can replace the key and query matrix with a single
query matrix without any loss of expressive power. If we eliminate the key
matrix in this way what is the resulting number of query matrix parameters
for a given layer and how does this compare to the number of key-query matrix
parameters for a given layer in the original transformer version.

3


