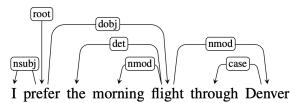
TTIC 31230 Fundamentals of Deep Learning, 2020

Problems For Language Modeling, Translation and Attention.

Problem 1. Transformers as Dependency Parsers. A dependency parse is a labeled directed graph on the words in a sentence. For example,



In this example the edges are labeled with **nsubj**, **dobj**, **det**, **nmod** and **case**. A dependency parse determines a tree with a root node labeled as **root** and with the other nodes labeled with the words of the sentence. This tree structure defines a set of phrases where each phrase consists of words beneath a given node of the tree.

- (a) Let k range over the set of possible labels in a dependency parse. There is typically a small fixed set of such labels. If we interpret k has a transformer head, what attention $\alpha(\mathbf{dobj}, \mathbf{prefer}, w)$ over the words w attended from the word \mathbf{prefer} by the head \mathbf{dobj} corresponds to the above dependency parse?
- (b) A dependency parse rarely has two edges leading from a given word that both have the same label. GTP-3 has 96 heads in each of 96 self-attention layers. It might be reasonable that, with so many heads, each head chould be encouraged to focus its attention on a small number of words (as would be typical in a dependency parse). Define a loss $\mathcal{L}_{\text{focus}}$ that can be combined with the log loss term of the language model such that $\mathcal{L}_{\text{focus}}$ encourages each head to focus on a small number of words. Write the total loss as a weighted sum of the language model loss \mathcal{L}_{LM} and $\mathcal{L}_{\text{focus}}$. You do not need to define \mathcal{L}_{LM} , just $\mathcal{L}_{\text{focus}}$.
- (c) Dependency edges tend to be between nearby words. Repeat part (b) but for a loss $\mathcal{L}_{\text{near}}$ which encourages the attention $\alpha[\ell, k, t_1, T_2]$ to be focused near t_1 . The loss $\mathcal{L}_{\text{near}}$ should be "robust" in the sense that it has a maximum value that is independent of the length T of the transformer window. This should allow some "outlier" long distance attentions which are needed for coreference.
- (d) State the "universalty assumption" under which the "loss shaping" terms of (b) and (c) above only hurts the language modeling performance. Also give a plausibility argument that these terms might help in practice.

Problem 2. Adjusting Temperature for Dimension. For a typical language model the softmax operation defining the probability $P(w_{t+1} \mid w_1, \dots, w_t)$ has the form

$$\alpha[\ell,t,w] = \operatorname*{softmax}_w h[\ell,t,I] e[w,I]$$

We now consider adding a "temperature parameter" β to this softmax.

$$\alpha[\ell, t, w] = \underset{w}{\text{softmax}} \quad \beta \ h[\ell, t, I] e[w, I] \tag{1}$$

- (a) Assume that the components of the vector h[t,I] are independent with zero mean and unit variance. Also assume that that the word vectors have been initialized so that the components of the vector e[w,I] are zero mean and unit variance. What initial value of β gives the result that the inner product $\beta h[t,I]e[w,I]$ has zero mean and unit variance. Explain your answer. (Use I to denote the dimension of the vectors h[t,I] and w[w,I].)
- (b) Relate your answer to (a) to the equation used for the self attention $\alpha(k, t_1, t_2)$ computed in the tansformer.

Problem 3. Parameterizing Inner-Product This problem is on transformer self-attention. Modern classification problems tend to use a softmax operation of the form

$$P(y|h) = \underset{y}{\text{softmax}} \ h^{\top} e(y) \tag{2}$$

where h is a vector computed by the neural network and e(y) is a vector embedding for the label y. Many early systems would insert a parameter matrix so that we have

$$P(y|h) = \underset{y}{\text{softmax}} \ h^{\top} W e(y) \tag{3}$$

However, it was generally observed that additional parameterization of the inner product operation does not improve the results. The vector h and the embedding e(y) can be learned to be such that the standard inner product works well. However, the attention softmax of the transformer (3) does not use a naive inner product.

- (a) Explain why we cannot replace (3) with a naive inner product of $L[\ell, t_1, J]$ and $L[\ell, t_2, J]$ as in (2).
- (b) Rewrite the transformer self-attention equation (2) in the form of (3) where the matrix W in (3) is replaced by by a matrix defined in terms of W^K and W^Q .

Problem 4. Repetition at Low Temperatures. For low temperatures and modest-sized language models we tend to generate infinitely repeating infinite sentences. We can get insight into this phenomenon by considering a trigram model where each word is predicted from the two preceding words using a conditional probability $P_{\Phi}(w_{t+2}|w_t,w_{t+1})$. We will assume trained word embeddings e(w) for each word w and a neural network predictor of the form

$$P(w_{t+1}|w_t, w_{t+1}) = \underset{w_{t+2}}{\operatorname{softmax}} \beta \ h_{\Phi}(e(w_t), e(w_{t+1}))^{\top} \ e(w_{t+2})$$

where h_{Φ} is some arbitray neural network returning a quey vector and β is a temperature parameter. We will assume that the model has been trained with β

held fixed at 1 but that we will generate from this trigram model with different values of β . What degenerate behavior are we guaranteed to see if we sample at zero temperature? Explain your answer.

Problem 5. Eliminating the Key Matrix. The self-attention in the transformer is computed by the following equations.

$$\begin{array}{lcl} {\rm Query}_{\ell+1}[k,t,i] & = & W_{\ell+1}^Q[k,i,J] L_{\ell}[t,J] \\ & {\rm Key}_{\ell+1}[k,t,i] & = & W_{\ell+1}^K[k,i,J] L_{\ell}[t,J] \\ & & \\ & \alpha_{\ell+1}[k,t_1,t_2] & = & {\rm softmax} \left[\frac{1}{\sqrt{I}} \; {\rm Query}_{\ell+1}[k,t_1,I] {\rm Key}_{\ell+1}[k,t_2,I] \right] \end{array}$$

Notice that here the shape of W^Q and W^K are both [K, I, J]. We typically have I < J which makes the inner product in the last line an inner product of lower dimensional vectors.

(a) Give an equation computing a tensor $\tilde{W}^Q[K, J, J]$ computed from W^Q and W^K such that the attention $\alpha(k, t_1, t_2)$ can be written as

$$\alpha_{\ell+1}(k, t_1, t_2) = \text{softmax} \left[L_{\ell}[t_1, J_1] \tilde{W}^{Q}[k, J_1, J_2] L_{\ell}[t_2, J_2] \right]$$

For a fixed k we have that $W^Q[k,I,J]$ and $W^K[k,I,J]$ are matrices. We want a matrix $\tilde{W}^Q[k,J,J]$ such that the attention can be written in matrix notation as $h_1^\top \tilde{W}^Q h_2$ where h_1 and h_2 are vectors and \tilde{W}^Q is a matrix. You need write this matrix \tilde{W}^Q in terms of the matrices for W^Q and W^K . But write your final answer in Einstein notation with k as the first index.

(b) Part (a) shows that we can replace the key and query matrix with a single query matrix without any loss of expressive power. If we eliminate the key matrix in this way what is the resulting number of query matrix parameters for a given layer and how does this compare to the number of key-query matrix parameters for a given layer in the original transformer version.