
TTIC 31230 Fundamentals of Deep Learning, 2020

Problems For Language Modeling, Translation and Attention.

Problem 1. Blank Language modeling. This problem considers “blank
language modeling” which is used in BERT. For blank language modelng we
draw a sentence w1, . . . , wT from a corpose and blank out a word at random
and ask the system to predict the blanked word. The cross-entropy loss for
blank language modeling can be written as

Φ∗ = argmin
Φ

Ew1,...,wT∼Train,t∼{1,...,T} − lnPΦ(wt|w1, . . . , wt−1, wt+1, . . . , wT )

Consider a bidirectional RNN run on a sequence of words w1, . . . , wT such that
for each time t we have a forward hidden state ~h[t, J ] computed from w1, . . . , wt

and a backward hidden state ~h[t, J ] computed from wT , wT−1, . . . wt. Also
assume that each word w has an associated word vector e[w, J ]. Give a definition

of P (wt | w1, . . . wt−1, wt+1, . . . , wT ) as a function of the vectors ~h[t− 1, J ] and
~h[t+1, J ] and the word vectors e[W, I]. You can assume that ~h[T, J ] and ~[h][T, J ]

have the same shape (same dimensions) but do not make any assumptions about
the dimension of the word vectors e[W, I]. You can assume whatever tensor
parameters you want.

Solution: There are various acceptable solutions. A simple one is to assume
the parameters include matrices ~W [I, J ] and ~W [I, J ]. Using this convention
and the standard convention for matrix-vector products we can then write a
solution as

PΦ(wt|w1, . . . , wt−1, wt+1, . . . , wT )

= softmax
wt

e[wt, I] ~W [I, J ]~h[t− 1, J ] + e[wt, I] ~W [I, J ] ~h[t+ 1, J ]

Problem 2. Image Captioning as Translation with Attention. In ma-
chine translation with attention the translation is generated from an autore-
gressive language model for the target langauge translation given the source
language sentence. The source sentence is converted to an initial hidden vector
h[0, J ] for the decoding (usually the final hidden vector of a right-to-left RNN
run on the input), plus the sequence M [Tin, J ] of hidden vectors computed by
the RNN on the source sentence where T is the length of the source sentence.
We then define an autoregressive conditional language model

PΦ(w1, . . . , wTout | h[0, J ], M [Tin, J ])

1



An autoregressive conditional language model with attention can be defined by

P (wt | w0, · · · , wt−1) = softmax
wt

e[wt, I]W auto[I, J ]h[t− 1, J ]

α[tin] = softmax
tin

h[t−1, J1]W key[J1, J2]M [tin, J2]

V [J ] =
∑
tin

α[tin]M [tin, J ]

h[t, J ] = CELLΦ(h[t− 1, J ], V [J ], e[wt, I])

Here CELL is some function taking (objects for) two vectors of dimensions J and
one vector of dimension I and returning (an object for) a vector of dimension J .

Rewrite these equations for image captioning where instead of M [tin, J ] we are
given an image feature tensor M [x, y,K]

Solution:

P (wt | w0, · · · , wt−1) = softmax
wt

e[wt, I]W auto[I, J ]h[t− 1, J ]

α[x, y] = softmax
x,y

h[t−1, J ]W key[J,K]M [x, y,K]

V [K] =
∑
x,y

α[x, y]M [x, y,K]

h[t, J ] = CELLΦ(h[t− 1, J ], V [K], e[wt, I])

Problem 3. Language CNNs. This problem is on CNNs for sentences. We
consider a model with parameters

Φ = (e[w, i],W1[∆t, i, i′], B1[i], . . . ,WL[∆t, i, i′], BL[i])

The matrix e is the word embedding matrix where e[w, I] is the vector embed-
ding of word w.

(a) Give an equation for the convolution layer L0[b, t, i] as a function of the word
embeddings and the input sentence w1, . . . , wT .

Solution:
L0[b, t, i] = e[w[b, t], i]

(b) Give an equation for L`+1[b, t, i] as a function of L`[b, t, i] and the parameters
W`+1[∆t, i′, i] and B`+1[i] and where L`+1 is computed stride 2.

2



Solution:

L`+1[b, t, i] = σ

∑
∆t,i′

W`+1[∆t, i′, i]L`[2t+ ∆t, i′]

−B`+1[i]


(c) Assuming all computations can be done in parallel as soon the inputs have
been computed, what is the parallel order of run time for this convolutional
model as a function of the input length T and the number of layers L (assume
all parameter tensors of size O(1)). Compare this with the parallel run time of
an RNN.

Solution: The CNN has O(L) parallel run time while the RNN is O(T ) or
O(T + L) with L layers of RNN.

Problem 4. A dependency parse is a labeled directed graph on the words in a
sentence. For example,

In this example the edges are labeled with nsubj, dobj, det, nmod and case.
A dependency parse determines a tree with a root node labeled as root and
with the other nodes labeled with the words of the sentence. This tree structure
defines a set of phrases where each phrase consists of words beneath a given
node of the tree.

(a) Let k range over the set of possible labels in a dependency parse. There
is typically a small fixed set of such labels. If we interpret k has a transformer
head, what attention α(dobj,prefer, w) over the words w attended from the
word prefer by the head dobj corresponds to the above dependency parse?

(b) A dependency parse rarely has two edges leading from a given word that
both have the same label. GTP-3 has 96 heads in each of 96 self-attention
layers. It might be reasonable that, with so many heads, each head chould
be encouraged to focus its attention on a small number of words (as would be
typical in a dependency parse). Define a loss Lfocus that can be combined with
the log loss term of the language model such that Lfocus encourages each head
to focus on a small number of words. Write the total loss as a weighted sum of
the language model loss LLM and Lfocus. You do not need to define LLM, just
Lfocus.

(c) Dependency edges tend to be between nearby words. Repeat part (b) but
for a loss Lnear which encourages the attention α[`, k, t1, T2] to be focused near

3



t1. The loss Lnear should be “robust” in the sense that it has a maximum value
that is independent of the length T of the transformer window. This should
allow some “outlier” long distance attentions which are needed for coreference.

(d) State the “universalty assumption” under which the “loss shaping” terms
of (b) and (c) above only hurts the langauge modeling performance. Also give
a plausibility argument that these terms might help in practice.

Problem 5. For a typical language model the softmax operation defining the
probablility P (wt+1 | w1, . . . , wt) has the form

α[`, t, w] = softmax
w

h[`, t, I]e[w, I]

We now consider adding a “temperature parameter” β to this softmax.

α[`, t, w] = softmax
w

β h[`, t, I]e[w, I] (1)

(a) Assume that the components of the vector h[t, I] are independent with
zero mean and unit variance. Also assume that that the word vectors have
been initialized so that the components of the vector e[w, I] are zero mean and
unit variance. What initial value of β gives the result that the inner product
βh[t, I]e[w, I] has zero mean and unit variance. Explain your answer. (Use I to
denote the dimension of the vectors h[t, I] and w[w, I].)

Solution: The mean of a sum of zero mean variables has zero mean. The
standard deviation of a sum of I independent variables each with unit variance
is
√
I. Therrefore we get unit variance by setting β = 1√

I
.

(b) Relate your answer to (a) to the equation used for the self attention α(k, t1, t2)
computed in the tansformer.

Solution: The transformer attention is given by

α[`, k, t1, t2] = softmax
t2

1√
I

Query[`, k, t1, I]Key[`, k, t2, I]

This has the same “temperature parameter” as the answer to part (a).

Problem 6. This problem is on transformer self-attention. Modern classifica-
tion problems tend to use a softmax operation of the form

P (y|h) = softmax
y

h>e(y) (2)

where h is a vector computed by the neural network and e(y) is a vector em-
bedding for the label y. Perhaps five years ago many systems would insert a
parameter matrix so that we have

P (y|h) = softmax
y

h>We(y) (3)

4



However, it was generally observed that additional parameterization of the inner
product operation does not improve the results. The vector h and the embedding
e(y) can be learned to be such that the standard inner product works well.
However, the attention softmax of the transformer (3) does not use a naive inner
product.

(a) Explain why we cannot replace (3) with a naive inner product of L[`, t1, J ]
and L[`, t2, J ] as in (2).

Solution: The attention α[`, k, t1, t2] need to depend on the particular head k.
Different heads compute different information as indicated in problem 2.

(b) Rewrite the transformer self-attention equation (3) in the form of (3) where
the matrix W in (3) is replaced by by a matrix defined in terms of WK and
WQ.

Solution:

α[`, k, t1, t2] = softmax
t2

1√
I
L[`, t1, J ] WQK [`, k, J, J ′] L[`, t2, J ′]

wQK [`, k, j1, j2] = WQ[`, k, I, j1]WK [`, k, I, j2]

(c) Give the number of multiplications computed by the self attention com-
putations (1) through (3) for a single layer ` and head k as a function of the
sequence length T and vector dimensions I and J . Compare this with the num-
ber of multiplications for your solution to (b) assuming that the matrix you
introduced is taken to be a parameter matrix of the self attantion as in (3).

Solution: For equations (1) through (3) we get 2TIJ+T 2I2. For the solution
to (a) we get T 2J2. Since we typically have I << J the solution to (a) is much
less efficient.

Problem 7. Here we consider a neural trigram model. In a trigram model each
word is predicted from the two preceding words using a conditional probability
PΦ(wt+2|wt, wt+1). We will assume trained word embeddings e(w) for each
word w and a neural network predictor of the form

P (wt+1|wt, wt+1) = softmax
wt+2

β hΦ(e(wt), e(wt+1))> e(wt+2)

where hΦ is some arbitray neural network returnnig a quey vector and β is a
temperature parameter. We will assume that the model has been trained with β
held fixed at 1 but that we will generate from this trigram model with different
values of β. What degenerate behavior are we guaranteed to see if we sample
at zero temperature? Explain your answer.

5



Solution: We are guaranteed to eventually repeat a bigram (a pair of words).
At zero temperature the generation is deterministic and hence when a pair of
words is repeated we must then see exactly the sequence following the first oc-
curance of that bigram and the generation enters a deterministic loop. This
happens in practice with many transformer models when sampling at low tem-
peratures.

Problem 8. A self-attention layer in the transformer takes a sequence of vec-
tors hin[T, J ] and computes a sequence of vectors hout[T, J ] using the following
equations where k ranges over “heads”. Heads are intended to allow for dif-
ferent relationship between words such as “coreference” or “subject of” for a
verb. But the actual meaning emerges during training and is typically difficult
or impossible to interpret. In the following equations we typically hve U < J
and we require I = J/K so that the concatenation of K vectors of dimension I
is a vector of dimension J .

Query[k, t, U ] = WQ[k, U, J ]hin[t, J ]

Key[k, t, U ] = WK [k, U, J ]hin[t, J ]

α[k, t1, t2] = softmax
t2

Query[k, t1, U ]Key[k, t2, U ]

Value[k, t, I] = WV [k, I, J ]hin[t, J ]

Out[k, t, I] =
∑
t′

α[k, t, t′]Value[k, t′, I]

hout[t, J ] = Out[1, t, I]; · · · ; Out[K, t, I]

A summation over N terms can be done in parallel in O(logN) time.

(a) For a given head k and position t1 what is the parallel running time of the
above softmax operation, as a function of T and U where we first compute the
scores to be used in the softmax and then compute the normalizing constant Z.

Solution: The scores can be computed in parallel in lnU time and then Z
can be computed in lnT time. We then get O(lnT + lnU). In practice the
inner product used in computing the scores would be done in O(U) time giving
O(U + lnT ).

(b) What is the order of running time of the self-attention layer as a function
of T , J and K (we have I and U are both less than J .)

Solution: O(lnT + lnJ). In practice the inner products would be done serially
which would give O(J + lnT ).

6



Problem 9. Just as CNNs can be done in two dimensions for vision and in
one dimension for language, the Transformer can be done in two dimensions for
vision — the so-called spatial transformer.

(a) Rewrite the equations from problem 1 so that the time index t is replaced
by spatial dimensions x and y.

Solution:

Query[k, x, y, U ] = WQ[k, U, J ]hin[x, y, J ]

Key[k, x, y, U ] = WK [k, U, J ]hin[x, y, J ]

α[k, x1, y1, x2, y2] = softmax
x2,y2

Query[k, x1, y1, U ]Key[k, x2, y2, U ]

Value[k, x, y, I] = WV [k, I, J ]hin[x, y, J ]

Out[k, x, y, I] =
∑
x′,y′

α[k, x, y, x′, y′]Value[k, x′, y′, I]

hout[x, y, J ] = Out[1, x, y, I]; · · · ; Out[K,x, y, I]

(b) Assuming that summations take logarithmic parallel time, give the parallel
order of run time for the spatial self-attention layer as a function of X, Y , J
and K (we have that I and U are both less than J).

Solution: O(lnXY + ln J)

Problem 10. The self-attention in the transformer is computed by the following
equations.

Query`+1[k, t, i] = WQ
`+1[k, i, J ]L`[t, J ]

Key`+1[k, t, i] = WK
`+1[k, i, J ]L`[t, J ]

α`+1[k, t1, t2] = softmax
t2

[
1√
I

Query`+1[k, t1, I]Key`+1[k, t2, I]

]
Notice that here the shape of WQ and WK are both [K, I, J ]. We typically
have I < J which makes the inner product in the last line an inner product of
lower dimensional vectors.

7



(a) Give an equation computing a tensor W̃Q[K,J, J ] computed from WQ and
WK such that the attention α(k, t1, t2) can be written as

α`+1(k, t1, t2) = softmax
t2

[
L`[t1, J1]W̃Q[k, J1, J2]L`[t2, J2]

]
For a fixed k we have that WQ[k, I, J ] and WK [k, I, J ] are matrices. We want
a matrix W̃Q[k, J, J ] such that the attention can be written in matrix notation
as h>1 W̃

Qh2 where h1 and h2 are vectors and W̃Q is a matrix. You need write
this matrix W̃Q in terms of the matrices for WQ and WK . But write your final
answer in Einstein notation with k as the first index.

Solution: This is easier to do in vector-matrix notation for a fixed k. But it
can also be done entirely in Einstein notation:

= softmax
t2

[
1√
I

(L`(t1, J1)WQ[k, I, J1]) (WK [k, I, J2]L`(t1, J2))

]

= softmax
t2

 1√
I

∑
j1,j2,i

L`(t1, j1) WQ[k, i, j1] WK [k, i, j2] L`(t1, j2)


= softmax

t2

∑
j1,j2

L`(t1, j1)

(
1√
I

∑
i

WQ[k, i, j1]) (WK [k, i, j2])

)
L`(t1, j2)


= softmax

t2

∑
j1,j2

L`(t1, j1) W̃Q[k, j1, j2] L`(t1, j2)


= softmax

t2

[
L`(t1, J1) W̃Q[k, J1, J2] L`(t1, J2)

]
W̃Q[k, j1, j2] =

1√
I
WQ[k, I, j1]W k[k, I, j2]

(b) Part (a) shows that we can replace the key and query matrix with a single
query matrix without any loss of expressive power. If we eliminate the key
matrix in this way what is the resulting number of query matrix parameters
for a given layer and how does this compare to the number of key-query matrix
parameters for a given layer in the original transformer version.

Solution: The original version uses 2(I × J) key-query matrix parameters for
each head. If we use only the single query matrix we use J2 parameters for each
head. These are the same for I = J/2.

8


