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Stochastic Gradient Descent (SGD)

The Classical Convergence Theorem
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Vanilla SGD

Φ -= ηĝ

ĝ = E(x,y)∼Batch ∇Φ loss(Φ, x, y)

g = E(x,y)∼Pop ∇Φ loss(Φ, x, y)

η is the “learning rate” hyper-parameter (a parameter not in Φ).
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Issues

•Gradient Estimation. The accuracy of ĝ as an estimate
of g.

•Gradient Drift (second order structure). The fact
that g changes as the parameters change.

•Convergence. To converge to a local optimum the learn-
ing rate must be gradually reduced toward zero.

•Exploration. Since deep models are non-convex we need
to search over the parameter space. SGD can behave like
MCMC.
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A One Dimensional Example

Suppose that y is a scalar, and consider

loss(β, y) =
1

2
(β − y)2

g = ∇β Ey∼Pop
1

2
(β − y)2

= β − Ey∼Pop y

ĝ = β − Ey∼Batch y

Even if β is optimal, for a finite batch we will have ĝ 6= 0.
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The Classical Convergence Theorem

Φ -= ηt∇Φ loss(Φ, xt, yt)

For “sufficiently smooth” non-negative loss with

ηt ≥ 0 lim
t→∞

ηt = 0
∑
t

ηt =∞
∑
t

η2
t <∞

we have that the training loss E(x,y)∼Train loss(Φ, x, t) con-
verges to a limit and any limit point of the sequence Φt is a
stationary point in the sense that ∇Φ E(x,y)∼Train loss(Φ, x, t) = 0.

Rigor Police: One can construct cases where Φ diverges to infinity, converges to a saddle point, or
even converges to a limit cycle.
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Physicist’s Proof of the Convergence Theorem

Since limt→0 ηt = 0 we will eventually get to arbitrarilly small
learning rates.

For sufficiently small learning rates any meaningful update of
the parameters will be based on an arbitrarily large sample of
gradients at essentially the same parameter value.

An arbitrarily large sample will become arbitrarily accurate as
an estimate of the full gradient.

But since
∑
t ηt = ∞, no matter how small the learning rate

gets, we still can make arbitrarily large motions in parameter
space.

For a rigorous proof see Neuro-Dynamic Programming, Bertsekas and Tsitsiklis, 1996.
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SGD as a form of MCMC

Learning Rate as a Temperature Parameter

Gao Huang et. al., ICLR 2017
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