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Stochastic Gradient Descent (SGD)

Heat Capacity with

Loss as Energy

and Learning Rate as Temperature
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MCMC models of SGD

These Plots are from the original ResNet paper. Left plot is
for CNNs without residual skip connections, the right plot is
ResNet.

Thin lines are training error, thick lines are validation error.

In all cases η is reduced twice, each time by a factor of 2.
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Converged Loss as a Function of η

For each value of η we converge at a loss L(η).

L(0)
.
= lim

η→0
L(η)

= L(Φ∗) Φ∗ a local optimum

Can we do a Taylor expansion of L(η)?

L(η) = L(Φ∗) +

(
dL
dη

∣∣∣∣
η=0

)
η + . . .
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Heat Capacity

L(η) = L(Φ∗) +

(
dL
dη

∣∣∣∣
η=0

)
η + . . .

Let b index a training example and let gb denote ∇ΦLb(Φ) at
Φ = Φ∗.

Heat Capacity Theorem:

∂L(η)

∂η

∣∣∣∣
η=0

=
1

4
Eb ||gb||2
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Proof Step 1

Let b index a training example and let Lb(Φ∗ + ∆Φ) be the
loss on training example b with model parameters Φ∗ + ∆Φ.

We take a second order Taylor expansion.

L(Φ) = Eb Lb(Φ)

Lb(Φ∗ + ∆Φ) = Lb(Φ∗) + gb∆Φ +
1

2
∆Φ>Hb∆Φ

Eb gb = 0

Eb Hb is positive definite
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Proof: Step 2

Let Qη be the stationary distribution on Φ defined by the SGD
stochastic process.

Let Pη be the distribution on ∆Φ = Φ− Φ∗ with Φ ∼ Qη.

L(η) = E∆Φ∼Pη Eb Lb + gb∆Φ +
1

2
∆Φ>Hb∆Φ

= Eb Lb(Φ∗) + E∆Φ∼Pη (Eb gb) ∆Φ +
1

2
∆Φ>(Eb Hb)∆Φ

= L(Φ∗) + E∆Φ∼Pη
1

2
∆Φ>(Eb Hb)∆Φ
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Proof: Step 3

Because Pη is a stationary distribution on ∆Φ we must have

E∆Φ∼PηEb ||∆Φ− η(gb + Hb∆Φ)||2 = E∆Φ∼Pη ||∆Φ||2

E∆Φ∼PηEb − 2η∆Φ>(gb+Hb∆Φ) + η2||(gb+Hb∆Φ)||2 = 0

E∆Φ∼Pη
1

2
∆Φ>(Eb Hb)∆Φ) =

η

4
E∆Φ∼PηEb ||(gb+Hb∆Φ)||2
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Proof: Step 4

L(η) = L(Φ∗) + E∆Φ∼Pη
1

2
∆Φ>(Eb Hb)∆Φ

E∆Φ∼Pη
1

2
∆Φ>(Eb Hb)∆Φ =

η

4
E∆Φ∼PηEb ||(gb+Hb∆Φ)||2

L(η) = L(Φ∗) +
η

4
E∆Φ∼PηEb ||(gb + Hb∆Φ)||2
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Proof Step 5

L(η) = L(Φ∗) +
η

4
E∆Φ∼PηEb ||(gb + Hb∆Φ)||2

∂L(η)

∂η

∣∣∣∣
η=0

=
1

4
lim
η→0

E∆Φ∼Pη Eb ||(gb + Hb∆Φ)||2

=
1

4
Eb ||gb||2
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END


