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Gradient Flow

Gradient flow is a non-stochastic (deterministic) model of stochas-
tic gradient descent (SGD).

Gradient flow is defined by the total gradient differential equa-

tion
dd
E B —g(CD) g(@) = Vo E(:C,y)NTrain £(CI)7 £, y)

We let ®(t) be the solution to this differential equation satis-
fying B(0) = i



Gradient Flow

Ao

P —g(P)

For small values of At this differential equation can be approx-
imated by

A = —g(D)At



Time as the Sum of the Learning Rates

Consider the update.

AP = —gAt

Here At has both a natural interpretation as time in a numer-
ical simulation of the flow differential equation.

But it also has a natural interpretation as a learning rate.

This leads to interpreting the sum of the learning rates as

“time” in SGD.



Gradient Flow and SGD

Consider a sequence of model parameters @1, ..., $p pro-

duced by SGD with

Dy = i —ng;i
and where g; is the gradient of the ¢th randomly selected train-
Ing point.

Take n — 0 and N — oo using N = t/n. We will show that
in this limit for SGD we have that ® 5 converges to ®(t) as
defined by gradient flow.



Gradient Flow and SGD

For ;1 = ®; — ng; we divide ®q, ..., O into V' N blocks.
(Cbl,...,@m) ((D\/WH"“’(DZ\/N) @T—\/NH’“"CDN)

For n — 0 and N = t/n we have nv/ N — 0 which implies
(D\/N ~ q)() — n\/ﬁg
where g is the average (non-stochastic) gradient.

Since the gradients within each block become non-stochastic,
we are back to gradient flow.



Diffusion

Consider a discrete-time process z(0), z(1), 2(2), 2(3), . . . with
z(n) € R? defined by

2(0) =y, y ~ pop(y)
zin+1) = z(n)+0ad, 6 ~N(0,I)

We can sample from z(n) using

2(0) =y, y~pop(y)
z(n) = z(0) + gdy/n, &~ N(0,1)



Diffusion

Fix a numerical time step At and consider a discrete-time pro-

cess z(0), z(At), z(2At), ...
2(0) =y, y~pop(y)

2(t+At) = 2(t) + o0VAL, 8§~ N(0,1)

We now take the limit of this numerical simulation as At — 0.

This limit defines a probability measure on the space of func-
tions z(t).



The Diffusion SDE

2(t+ At) = z(t) + 00V AL, 5§ ~ N(0,1)

For simple diffusion (Brownian motion) this equation holds for
any continuous t > 0 and At > 0.



The Langevin SDE

Consider gradient flow.
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The Langevin SDE

In the Langevin SDE we add Gaussian noise to gradient flow.

O(t + At) = O(t) — gAt + o0V AL, 6 ~ N(0,1)

We will show that the stationary distribution of Langevin Dy-
namics models a Bayesian posterior probability distrbution on
the model parameters where o acts as a temperature parame-
ter.
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The Langevin SDE

Ot + At) = O(t) — g(D)AL + 06V AL, 6 ~ N(0,1)

Let p(P) be a probability density on the parameter space .
The density p(®) defines a gradient flow and a diffusion flow.

gradient flow = —p(P)g(P)

1
diffusion flow = - 02 Vg p(d)

The expression for the diffusion flow follows from the Fokker-
Planck equation. A derivation of the diffusion flow expression
from first princple is given in the appendix.

12



The Langevin SDE

gradient flow = —p(®)g(P)

1
diffusion flow = -3 02 Vo(p(P))

For the stationary distribution these two flows cancel each
other out. In one dimension we have

1
§O'QVCI) D = —pvch
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The Langevin Stationary Distribution

1
—OQV@ p = —pvgpﬁ

2
1
_OQV@p = —VoL
2 p
1
50" (Volup) = Ve(—L)
1 5
50' lﬂp — —E—l— C

p(®) = %eXp (

—2£(<I>)>

o
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A Bayesian Interpretation of Langevin Dynamics

Train = (z1,y1), - -, (Tn, Yn)
The parameters ¢ determine Pg(y|x).

p(®)p(Train[0)
p(Train)

p(P|Train) =

p(@)p(@'l, s 7xn)P(I><y17 s 7yn|x17 s axn)
P, ) Plyr, -yl - oo x)

p(®)Po(y1, - YulT1, ..., 20)
P(y1, ... ynlz1, ... xp)
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A Bayesian Interpretation of Langevin Dynamics

Train = (xl, y1), c ey (xna yn)

p(@)Pq)(’yl, toee 7yn|x17 s 75(:”)

p(®|Train) = Py, e .

The denominator does does not depend on ¢ which implies

p(®|Train) o p(P HPCD yilr;)
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A Bayesian Interpretation of Langevin Dynamics

1
Define L(®) = - Z —In Py (y;|z;) — 5lnp(<l>)

1
— E(m,y)NTrain [_ In P@(y‘x)] o ﬁ hlp(q))

This Gives  p(®|Train) = + exp (—nL(D))
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A Bayesian Interpretation of Langevin Dynamics

1
p(P|Train) = Ee_na@)

1 —2L(P
pLangevin((D) — EGXP ( 2( )>

o

Setting o2 = % gives

pLangeVin<(D> = p(®|Train)
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A General SDE

z(t+ At) = x(t) + p(z, )AL+ oz, t)VAL, § ~N(0,I) (1)

Here o(x,t) is a matrix.

This is conventionally written as

dr = p(z,t)dt + o(x,t)dB (2

where B denotes a Weiner process (simple diffusion, aka Brow-
nian motion)

[ find (1) more intuitive than (2) but they are the same thing.
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The SGD SDE

We now consider SGD
Piy1 = ®; —ng;

We consider ®; and &, y with N small enough that

iy n = P
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Gradient Noise

g — g(P) has zero mean.
Oiyn ~ Dy —nNg(®) —n > (i — g(P))
=1

We pick N large enough that Zj-vzl(gji — g(P)) is approxi-
mately Gaussian.
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Gradient Noise

N
Dipn ~ By —nNg(®) —n > (3 — g(P))
1=1

~ &; —Ng(®) —nV N6, §~N(0,%)

Now define At = Nnpor N = At/n.

Ot + At) = O(t) — g(®)At +nd/At/n, § ~ N(0,%)

Q

= O(t) — g(P)At + /noVAL, 6~ N(0,%)
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The SGD SDE

Q

Ot + At) = O(t) — g(P)At + /nOVAL, 6 ~ N(0,%)

— O(t) — g(P)AL + /1o (P)SVAL, & ~ N(0,1)

Here the matrix o(®) is the square root of the covariance ma-

trix 2(P).
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The SGD SDE in One Dimension

O(t + At) = O(t) — g(P)AL + /5o (D)o At

[n one dimension, if the gradient noise o(®) is constant, then
the SGD SDE has the same form as Langevin dynamics and
we get.

p(x) = %eXp (_Qﬁ(x)>

no?

This is Gibbs and provides an interpretation of the learning
rate as temperature.
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The SGD SDE in Higher Dimension

O(t + At) = O(t) — g(P)AL + /5o (D)oV At

This is almost the general case of an SDE.

Here g(®) is the gradient of a scalar function. This is not true
for a general SDE.

But the matrix o(®P) is arbitrary.

Here the learning rate n controls the level of noise but we do
not in general have a Gibbs distribution.
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The SGD SDE, A Counter Example

If we have two dimensions x and y where the loss separates
as L(x,y) = L(x) + L(y), and the matrix o(®P) is constant
and diagonal, each dimension behaves as an independent one
dimensional SGD and we get.

plr,y) = = exp <2£(x> + 2£<y)>

Z noz no;

This 1s not Gibbs.
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Langevin-Adaptive SGD

Consider SGD where the update dirction is determined by a
matrix D).

®ip1 = ¢; —nDy;

D defines a linear map from dual vectors to primal vectrors.

The function defined by D has a meaning indepent of the
choice of coordinates.
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Coordinate Independent Formulation of Gradient Noise

We can define the covariance matrix of the noise as

The gradient noise covariance matrix »(®) defines a linear
map from the primal vectors to dual vectors (independent of
coordinates).

S(Q)AD = E; (§— g)((§ — g) ' AD)
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Solving for D to Get Langevin

$ip1 =P, —nDyg;

Setting At = Nn we get

O(t + At) = O(t) — DgAt + /nDSVAL, & ~ N(0,5(D))

Here the noise vector 0 is a dual vector.
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Solving for D

For a given probability density p(®) over the parameters ® the
flows are

oradient flow = —pDg

1
diffusion flow = —§nDZ(<I>)DV¢p

These are vectors in parameter space that are independent of
the choice of coordinates.
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Solving for D

eradient flow = —pDg

1
diffusion flow = —énDZ(CD)DVq)p

Detailed Balance:

1
SNDE(®) DV p = —pDV oL
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Solving for D

1
SNDE(®) DV p = —pDV oL

1
SnDY(®) —V;’p = —DVqL

1
577DZ(<I>)D(V¢ Inp) = =DVl

Setting D = 3(d) ! gives

nS(®) 7 (Vg Inp) = —X(8)7 V4L
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The Gibbs distribution

iS(®) 7 (Vg Inp) = —X(8)7 V4L

The factors of X(®)~! now cancel (we can multiply both sides
by ¥(®)) and we get

1
51 (Voplnp) = -Vl

This equation is independent of coordinates.
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The Gibbs Distribution

1
57 (Voplnp) = =Vl
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The Gibbs Distribution

For the adaptive update

0,1 = D — nN(0) Ly,

we have a stationary distribution
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END
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Appendix: Diffusion Flow

We consider the one dimensional case where we have a function z(t) € R. We consider a very small
time step At and consider only the diffusion flow.

z(t+ At) = z(t) +od0VAL, 6~ N(0,1)

We assume a density p, of values of x and let ps(d) be the normal distribution N (0,1) on .

The quantity of mass transfer in the time interval At from values above x to values below x is

/OO pe(x + 2) p5(05\/A_t < —2)dz

—0
= /OO (x + 2) <5< . )dz
0 Dz Ds >~ o/ AL

o0 —2z
= 4+ 2) D d
/zzop S (0 At) :

where @ is the cummulative function of the Gaussian.
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Appendix: Diffusion Flow

The quantity of mass transfer in the time interval At from values above x to values below z is

o —z
(x4 2) P dz
/z:op ( ) (0 At)

By a change of variables u = z /(v At) we get

/io po(x + oV AL 1) D(—u)oVAL du

As At — 0 we can use the first order Taylor expansion of the density.

0@/1:) <px(:c) +oVAt udp (x)) O(—u) du

dx
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Appendix: Diffusion Flow

0\/_/ (pl IRy v i )> O(—u) du

= oVAt p,(2) (/:ch(—u) du> +U2Atdp;i ?) (/u: uq>(—u)du)

A similar alanysis shows that the mass transfer from lower values to higher values is

(0. ¢]

= oVAt p,(2) (/u_ocp(—u) du> - a%tdp;—a(f) (/:0 ucb(—u)du)

The net mass transfer in the positive x direction is the second minus the first or

_ QAtdp;i ?) (/: ucb(—u)du>
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Appendix: Diffusion Flow

The net mass transfer in the positive x direction is

—202Atdp;—<m> < / N ucb(—u)du)

X =0
Note that the mass transfer is proportional to At. Dividing by At gives the flow per unit time.

Diffusion flow = —ao? pd(x) a= 2/ u®(—u)du
x u=0

a can be calculated using integration by parts.

a = 2/ u®(—u)du
0

= /000 O (—u)du?

= u?®(—u)|X + / u?¢(—u)du where ¢ is the Gaussian density
0
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Appendix: Diffusion Flow

We now have that the diffusion flow is

Diffusion flow = —= 222 ()
2 dx
For dimension larger than 1 we have
P 1
Diffusion flow = —3 YV.ps

Where ¥ = E (§ — g)(§ — g) " is the covariance matrix of the gradient noise.

Here we have derived this from first principle but it also follows from the Fokker—Planck equation

(see Wikipedia).
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