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Stationary Distributions of SDEs and Temperature
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The Stationary Distribution

Φ(t + ∆t) ≈ Φ(t)− g(Φ)∆t + ε
√

∆t ε ∼ N (0, ηΣ)

For an SDE we have a stationary continuous density in param-
eter space.

We have a probability mass flow due to the loss gradient and
a diffusion probability mass flow proportional to the density
gradient.
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The Stationary Distribution with Constant Gradiant Noise

We consider the one dimensional case — a single parameter x
— and a probability density p(x).

We will assume the stationary distribution is limited to a region
where the gradient noise is effectively constant.

The gradient flow is equal to −p(x)g.

The diffusion flow is −1
2 ησ

2 dp(x)/dx (see the appendix).

For a stationary distribution the sum of the two flows is zero
giving.

1

2
ησ2dp

dx
= −pdL

dx

3



The 1-D Stationary Distribution

1

2
ησ2dp

dx
= −pdL

dx

dp

p
=
−2dL
ησ2

ln p =
−2L
ησ2

+ C

p(x) =
1

Z
exp

(
−2L(x)

ησ2

)
We get a Gibbs distribution with η as temperature!
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A 2-D Stationary Distribution

Let p be a probability density on two parameters (x, y).

We consider the case where x and y are completely indepen-
dent with

L(x, y) = L(x) + L(y)

For completely independent variables we have

p(x, y) = p(x)p(y)

=
1

Z
exp

(
−2L(x)

ησ2
x

+
−2L(y)

ησ2
y

)
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A 2-D Stationary Distribution

p(x, y) =
1

Z
exp

(
−2L(x)

ησ2
x

+
−2L(y)

ησ2
y

)

This is not a Gibbs distribution!

It has two different temperature parameters!
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Forcing a Gibbs Distribution

Suppose we use parameter-specific learning rates ηx and ηy

p(x, y) =
1

Z
exp

(
−2L(x)

ηxσ2
x

+
−2L(y)

ηyσ2
y

)
Setting ηx = η′/σ2

x and ηy = η′/σ2
y gives

p(x, y) =
1

Z
exp

(
−2L(x)

η′
+
−2L(y)

η′

)
=

1

Z
exp

(
−2L(x, y)

η′

)
Gibbs!
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The Case of Locally Constant Noise

and Locally Quadratic Loss

In this case we can impose a change of coordinates under which
the Hessian is the identity matrix. So without loss of generality
we can take the Hessian to be the identity.

We can consider the covariance matrix of the vectors ĝ in the
Hessian-normalized coordinate system.
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The Case of Locally Constant Noise

and Locally Quadratic Loss

If we assume constant noise covariance in the neighborhood
of the stationary distribution then, in the Hessian normalized
coordinate system, we get a stationary distribution

p(Φ) ∝ exp

−∑
i

2Φ2
i

ησ2
i


where Φi is the projection of Φ onto to a unit vector in the
direction of the ith eigenvector of the noise covariance matrix
and σ2

i is the corresponding noise eigenvalue (the variance of
the ĝi).
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END
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Appendix: Diffusion Flow

We consider the one dimensional case. In the SDE formalism we move stochastically from x to
x + ε

√
∆t with ε ∼ N (0, ησ2) where η is the learning rate and σ2 is the variance of the random

gradients ĝt,b.

To avoid confusion between different probability densities we will us ρ(x) for the probability mass
distribution in x and use pε(Ψ) for the probability that Ψ holds under a random draw of ε.
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Appendix: Diffusion Flow

We move stochastically from x to x+ ε
√

∆t with ε ∼ N (0, ησ2)

This is the same as moving stochastically from x to x+ ε
√
ησ
√

∆t with ε ∼ N (0, 1).

The quantity of mass transfer in the time interval ∆t from values above x to values below x is

∫ ∞
z=0

ρ(x+ z) pε(ε
√
ησ
√

∆t ≤ −z)dz

=

∫ ∞
z=0

ρ(x+ z) pε

(
ε ≤ −z
√
ησ
√

∆t

)
dz

=

∫ ∞
z=0

ρ(x+ z) Φ

(
−z

√
ησ
√

∆t

)
dz

where Φ is the cummulative function of the Gaussian.
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Appendix: Diffusion Flow

The quantity of mass transfer in the time interval ∆t from values above x to values below x is

∫ ∞
z=0

ρ(x+ z) Φ

(
−z

√
ησ
√

∆t

)
dz

By a change of variables u = z/(
√
ησ
√

∆t) we get

∫ ∞
u=0

ρ(x+
√
ησ
√

∆t u) Φ(−u)
√
ησ
√

∆t du

As ∆t→ 0 we can use the first order Taylor expansion of the density.

√
ησ
√

∆t

∫ ∞
u=0

(
ρ(x) +

√
ησ
√

∆t u
dρ(x)

dx

)
Φ(−u) du
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Appendix: Diffusion Flow

√
ησ
√

∆t

∫ ∞
u=0

(
ρ(x) +

√
ησ
√

∆t u
dρ(x)

dx

)
Φ(−u) du

=
√
ησ
√

∆t ρ(x)

(∫ ∞
u=0

Φ(−u) du

)
+ ησ2∆t

dρ(x)

dx

(∫ ∞
u=0

uΦ(−u)du

)
A similar alanysis shows that the mass transfer from lower values to higher values is

=
√
ησ
√

∆t ρ(x)

(∫ ∞
u=0

Φ(−u) du

)
− ησ2∆tdρ(x)

dx

(∫ ∞
u=0

uΦ(−u)du

)

The net mass transfer in the positive x direction is the second minus the first or

= −2ησ2∆t
dρ(x)

dx

(∫ ∞
u=0

uΦ(−u)du

)
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Appendix: Diffusion Flow
The net mass transfer in the positive x direction is

−2ησ2∆t
dρ(x)

dx

(∫ ∞
u=0

uΦ(−u)du

)
Note that the mass transfer is proportional to ∆t. Dividing by ∆t gives the flow per unit time.

Diffusion flow = −αησ2dρ(x)

dx
α = 2

∫ ∞
u=0

uΦ(−u)du

α can be calculated using integration by parts.

α = 2

∫ ∞
0

uΦ(−u)du

=

∫ ∞
0

Φ(−u)du2

= u2Φ(−u)|∞0 +

∫ ∞
0

u2φ(−u)du where φ is the Gaussian density

=

∫ ∞
0

u2φ(−u)du

=
1

2
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Appendix: Diffusion Flow

We now have that the diffusion flow is

Diffusion flow = −1

2
ησ2

dρ(x)

dx

For dimension larger than 1 we have

Diffusion flow = −1

2
ηΣ∇xρ

Where Σ = E (ĝ − g)(ĝ − g)> is the covariance matrix of the gradient noise.

Here we have derived this from first principle but it also follows from the Fokker–Planck equation

(see Wikipedia).
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END


