
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2023

Stochastic Gradient Descent (SGD)

Temperature, Batch Size, Momentum, and Adam

1



The Classical Convergence Theorem

Φ -= ηt∇Φ L(Φ, xt, yt)

For “sufficiently smooth” non-negative loss with

ηt ≥ 0 lim
t→∞

ηt = 0
∑
t

ηt =∞
∑
t

η2
t <∞

we have that the training loss E(x,y)∼Train L(Φ, x, y) con-
verges to a limit and any limit point of the sequence Φt is a
stationary point in the sense that ∇Φ E(x,y)∼Train L(Φ, x, t) = 0.

Rigor Police: One can construct cases where Φ diverges to infinity, converges to a saddle point, or
even converges to a limit cycle.

2



Physicist’s Proof of the Convergence Theorem

Since limt→∞ ηt = 0 we will eventually get to arbitrarilly
small learning rates.

For sufficiently small learning rates any meaningful update of
the parameters will be based on an arbitrarily large sample of
gradients at essentially the same parameter value.

An arbitrarily large sample will become arbitrarily accurate as
an estimate of the full gradient.

But since
∑
t ηt = ∞, no matter how small the learning rate

gets, we still can make arbitrarily large motions in parameter
space.

For a rigorous proof see Neuro-Dynamic Programming, Bertsekas and Tsitsiklis, 1996.

3



Vanilla SGD

ĝ = E(x,y)∼Batch ∇Φ L(Φ, x, y)

Φt+1 = Φt − ηt ĝ

ηt is the learning rate for time t.

4



The Learning Rate Schedule

At the beginning a large learning rate reduces the loss faster.
Near the end a small learning rate reaches a lower loss.

How the learning rate changes over time is called the learn-
ing rate schedule.

In the early days of deep learning the learning rate was reduced
by a factor of 2 in steps (as above).

5



Temperature

As the learning rate is decreased (here by factors of 2) the asymptotic loss
decreases.

We will say that two setting of hyper-parameters (for example η and the
batch size B) run at the same “temperature” if they result in the same
asymptotic loss value.

Two setting of hyper-parameters (such as the learning rate η and batch size

B) will behave similarly if they have the same temperature schedule

(as opposed to learning rate schedule).

6



Physical Temperature

Physical temperature is a relationship between the energy of a system state
and its probability.

P (x) =
1

Z
e
−E(x)
kT Z =

∑
x

e
−E(x)
kT

This is called the Gibbs or Boltzman distribution.

E(x) is the energy of physical microstate state x.

k is Boltzman’s constant.

Z is called the partition function.

We will eventually show that under certain (somewhat special) conditions

the asymptotic probability distribution over model parameters is a Gibbs

distribution where the energy is the loss.

7



Temperature

The Gibbs distribution is typically written as

P (x) =
1

Z
e−βE(x)

β = 1
kT is the (inverse) temperature parameter.

“Hot” is when β is small and “cold” is when β is large (con-
fusing).

8



Batch Size and Temperature

PyTorch vanilla SGD uses the following update which defines
a meaning of the learning rate η.

Φt+1 -= ηĝt

ĝt =
1

B

∑
b

ĝt,b

Here ĝt is the average gradient over the batch.

For PyTorch vanilla SGD both the batch size and the learning
rate influence temperature (not good).

9



Making Temperature Independent of Batch Size

For batch size 1 with learning rate η0 we have

Φt+1 = Φt − η0 ∇ΦL(t,Φt)

Φt+B = Φt −
B−1∑
b=0

η0 ∇ΦL(t + b,Φt+b−1)

≈ Φt − η0

∑
b

∇ΦL(t + b,Φt)

= Φt −Bη0 ĝt

For batch updates Φt+1 = Φt−Bη0 ĝt the temperature is essen-

tially determined by η0 independent of B.



Making Temperature Independent of B

In 2017 it was discovered that setting η = Bη0 allows very
large (highly parallel) batches.

Accurate, Large Minibatch SGD: Training Ima-
geNet in 1 Hour, Goyal et al., 2017.

11



Momentum

Momentum is another hyper-parameter in Deep Learning.

Momentum uses a moving average of the gradient.

Consider a sequence x1, x2, x3, . . ..

For t ≥ N , the rolling average of the N most recent values
is

xt =
1

N

N−1∑
k=0

xt−k

This is awkward to compute and is influenced by both the
value added and the value removed from the average.

12



Exponential Moving Average (EMA)

Consider a sequence x1, x2, x3, . . ..

The corresponding exponential moving average (EMA)
is

x̃0 = 0

x̃t =

(
1− 1

N

)
x̃t−1 +

(
1

N

)
xt

This behaves like the rolling average of the last N values but is
easy to compute and does not involve removing any particular
old value.

13



Exponential Moving Average (EMA)

x̃t =

(
1− 1

N

)
x̃t−1 +

(
1

N

)
xt

=
1

N

t−1∑
i=0

[(
1− 1

N

)i
xt−i

]

∞∑
i=0

(
1− 1

N

)i
= N

14



The Conventional Formulation of EMAs

x̃t =

(
1− 1

N

)
x̃t−1 +

(
1

N

)
xt

is written as

x̃t = βx̃t−1 + (1− β)xt

where
β = 1− 1/N

But we can use any β ∈ [0, 1).

In deep learning we typically take β to be .9, .99 or .999 cor-
responding to N being 10, 100 or 1000.

15



EMA Momentum

g̃0 = 0

g̃t =

(
1− 1

N

)
g̃t−1 +

1

N
ĝt, N ≥ 1

= βg̃t−1 + (1− β)ĝt, β ∈ [0, 1)

Φt+1 = Φt − ηg̃t

16



EMA Momentum: Temperature is Independent of N

Unless the batch size is extremely large (larger than possible
for academics), the temperature is determined by the total
effect of a single training gradient ĝ.

With EMA momentum the total contribution of a single ĝt is

1

N

∞∑
i=0

(
1− 1

N

)i
= (1− β)

∞∑
i=0

βi

= 1

Hence the temperature is determined by η independent of N .



Heavy Ball Momentum

The PyTorch implementation of vanilla SGD uses “heavy ball
momentum”.

vt = µvt−1 + η ∗ ĝt

= µvt−1 + (1− µ)
η

1− µ
∗ ĝt

Φt+1 = Φt − vt

In PyTorch vanilla SGD the temperature depends on all three
hyper parameters — µ, B, and η (not good).

18



Heavy Ball Momentum

For PyTorch vanilla SGD we can set η by

η = (1− µ)Bη0

For academic batch sizes this setting of η makes the tempera-
ture depend on η0 independent of µ and B.

19



Adaptive SGD with Momentum (Adam)

Adam introduces even more hyper-parameters.

Adam is derived from RMSProp which first appeared in lecture
slides by Hinton.

“Adaptive” means that Different learning rates are used for
different parameters.

20



Adam

Adam uses the EMA momentum.

PyTorch RMSProp uses heavy ball parameterization (not good).

The choice of momentum parameterization may be an impor-
tant reason Adam is prefered over RMSprop in practice —
hyper-parameter tuning is much easier when temperature is
determined by a single parameter.

21



Adam (Without Bias Correction)

g̃t[i] = βg g̃t−1[i] + (1− βg)ĝt[i] βg typically .9 or .99

st[i] = βsst−1[i] + (1− βs)ĝt[i]2 βs typically .99 or .999

Φt+1[i] = Φt[i]− η
g̃t[i]√
st[i] + ε

22



Adam as Gradient Normalization

We can set βg = 0 without influencing temperature. Hence
Adam should be approximately equivalent to

st[i] = βsst−1[i] + (1− βs)ĝt[i]2

Φt+1[i] = Φt[i]− η
gt[i]√
st[i] + ε

While normalization layers normalize the values, Adam nor-
malizes the gradients.

23



Bias Correction

Consider a standard EMA.

x̃0 = 0

x̃t =

(
1− 1

N

)
x̃t−1 +

(
1

N

)
xt

For t < N the average x̃t will be strongly biased toward zero.

24



Bias Correction

The following running average maintains the invariant that x̃t
is exactly the average of x1, . . . , xt.

x̃t =

(
t− 1

t

)
x̃t−1 +

(
1

t

)
xt

=

(
1− 1

t

)
x̃t−1 +

(
1

t

)
xt

We now have x̃1 = x1 independent of any x0.

But this fails to track a moving average for t >> N .

25



Bias Correction

The following avoids the initial bias toward zero while still
tracking a moving average.

x̃t =

(
1− 1

min(N, t)

)
x̃t−1 +

(
1

min(N, t)

)
xt

The PyTorch version of Adam has a more subtle form of bias
correction which yields the same effect.

26



Adam

g̃t[i] =

(
1− 1

min(t, Ng)

)
g̃t−1[i] +

1

min(t, Ng)
ĝt[i]

st[i] =

(
1− 1

min(t, Ns)

)
st−1[i] +

1

min(t, Ns)
ĝt[i]

2

Φt+1[i] = Φt −
η√

st[i] + ε
g̃t[i]

27



Decoupling Hyper-Parameters

The following reparameterization should be helpful for hyper-parameter
tuning for Adam. Here the independent hyperparameters are N 0

g , N
0
s , B,

ε0 and η0. Temperature should depend primarily on η0 independent of the
other parameters and the procedure gracefully converges to vanilla SGD in
the limit as ε0 →∞.

Ng = (1− βg) = min(1, N 0
g/B)

Ns = (1− βs) = min(1, N 0
s /B)

η =

 εBη0 for ε >
√
st[i]

Bη0 otherwise

28



Stochastic Gradient Descent (SGD)

The Classical Convergence Theorem

The Learning Rate as Temperature

Temperature, Batch Size, Momentum, and Adam

29



END


