
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2023

Stochastic Gradient Descent (SGD)

The Classical Convergence Theorem

The Learning Rate as Temperature

Temperature, Batch Size, Momentum, and Adam

1



Vanilla SGD

Φt+1 = Φt − ηtĝ

ĝ = E(x,y)∼Batch ∇Φ L(Φ, x, y)

g = E(x,y)∼Pop ∇Φ L(Φ, x, y)

ηt is the learning rate for time t.

2



Issues

• Gradient Noise: The accuracy of ĝ as an estimate of g.

• Gradient Drift:(second order structure) The fact
that g changes as the parameters change.

• Convergence: Convergence requires ηt→ 0.

• Exploration: Reducing η slowly allows better exploration
of model parameters.

3



The Classical Convergence Theorem

Φ -= ηt∇Φ L(Φ, xt, yt)

For “sufficiently smooth” non-negative loss with

ηt ≥ 0 lim
t→∞

ηt = 0
∑
t

ηt =∞
∑
t

η2
t <∞

we have that the training lossE(x,y)∼Train L(Φ, x, t) converges
to a limit and any limit point of the sequence Φt is a stationary
point in the sense that ∇Φ E(x,y)∼Train L(Φ, x, t) = 0.

Rigor Police: One can construct cases where Φ diverges to infinity, converges to a saddle point, or
even converges to a limit cycle.

4



Physicist’s Proof of the Convergence Theorem

Since limt→0 ηt = 0 we will eventually get to arbitrarilly small
learning rates.

For sufficiently small learning rates any meaningful update of
the parameters will be based on an arbitrarily large sample of
gradients at essentially the same parameter value.

An arbitrarily large sample will become arbitrarily accurate as
an estimate of the full gradient.

But since
∑
t ηt = ∞, no matter how small the learning rate

gets, we still can make arbitrarily large motions in parameter
space.

For a rigorous proof see Neuro-Dynamic Programming, Bertsekas and Tsitsiklis, 1996.

5



SGD as a form of MCMC

Learning Rate as a Temperature Parameter

Gao Huang et. al., ICLR 2017

6



Temperature

Physical temperature is a relationship between the energy and
probability.

P (x) =
1

Z
e
−E(x)
kT Z =

∑
x

e
−E(x)
kT

This is called the Gibbs or Boltzman distribution.

E(x) is the energy of physical microstate state x.

k is Boltzman’s constant.

Z is called the partition function.

7



Temperature

Boltzman’s constant can be measured using the ideal gas law.

pV = NkT

p = pressure

V = volume

N = the number of molecules

T = temperature

k = Boltzman’s constant

We can measure p, V , N and T and solve for k.

8



Temperature

The Gibbs distribution is typically written as

P (x) =
1

Z
e−βE(x)

β = 1
kT is the (inverse) temperature parameter.

“Hot” is when β is small and “cold” is when β is large (con-
fusing).

9



Loss as Energy

Learning Rate as Temperature

A finite learning rate defines an equalibrium probability distri-
bution (or density) over the model parameters.

Each value of the model parameters has an associated loss.

The distribution over model parameters defines a distribution
over loss.

10



Loss as Energy

Learning Rate as Temperature

Equalibrium energy (loss) distributions at three different tem-
peratures (learning rates).

Plots are from the ResNet paper. Left plot is for CNNs without residual skip
connections, the right plot is ResNet. Thin lines are training error, thick lines are
validation error. In all cases η is reduced twice, each time by a factor of 2.

11



Loss as Energy

Learning Rate as Temperature

The learnng rate is always reduced over time. The profile of
learning rate reduction is called the learning rate sched-
ule. An older convention (shown here) is to reduce the learning
rate by a factor of 2 in steps.

Modern transformer training first quickly and smoothly ramps
up the learning rate (the warm-up phase) up and then slowly
and smoothly ramps it down.

12



Batch Size and Temperature

Vanilla SGD with minibatching typically uses the following
update which defines the meaning of η.

Φt+1 -= ηĝt

ĝt =
1

B

∑
b

ĝt,b

Here ĝb is the average gradient over the batch.

Under this update increasing the batch size (while hold-
ing η fixed) reduces the temperature.

13



Making Temperature Independent of B

For batch size 1 with learning rate η0 we have

Φt+1 = Φt − η0 ∇ΦL(t,Φt)

Φt+B = Φt −
B−1∑
b=0

η0 ∇ΦL(t + b,Φt+b−1)

≈ Φt − η0

∑
b

∇ΦL(t + b,Φt)

= Φt −Bη0 ĝt

For batch updates Φt+1 = Φt − Bη0 ĝt the temperature is
essentially determined by η0 independent of B.



Making Temperature Independent of B

In 2017 it was discovered that setting η = Bη0 allows very
large (highly parallel) batches.

Accurate, Large Minibatch SGD: Training Ima-
geNet in 1 Hour, Goyal et al., 2017.

15



EMA Momentum

Momentum in general is equivalent to using an exponential
moving average (EMA) of the gradient.

EMA momentum is parameterized directly as an EMA.

Traditional momentum (momentum in Vanilla SGD in Py-
Torch) defines the parameters differently.

The Adam optimizer uses the EMA parameterization which is
cleaner and which we describe first.

16



Exponential Moving Average (EMA)

Consider a sequence x1, x2, x3, . . ..

For t ≥ N , the moving average of the N most recent values
is

xt =
1

N

N−1∑
k=0

xt−k

The corresponding exponential moving average is

x̃0 = 0

x̃t =

(
1− 1

N

)
x̃t−1 +

(
1

N

)
xt

17



Exponential Moving Average (EMA)

x̃t =

(
1− 1

N

)
x̃t−1 +

(
1

N

)
xt

=
1

N

t∑
s=1

[(
1− 1

N

)t−s
xs

]
≈ 1

N

t∑
s=1

e−(s−t)/N xs

∞∑
i=0

(
1− 1

N

)i
= N

18



The Conventional Formulation of EMAs

x̃t =

(
1− 1

N

)
x̃t−1 +

(
1

N

)
xt

is written as

x̃t = βx̃t−1 + (1− β)xt

where
β = 1− 1/N

But we can use any β ∈ [0, 1).

In deep learning models typical values for β are .9, .99 or .999
corresponding to N being 10, 100 or 1000.

19



EMA Momentum:

g̃0 = 0

g̃t =

(
1− 1

N

)
g̃t−1 +

1

N
ĝt

= βg̃t−1 + (1− β)ĝt

Φt+1 = Φt − ηg̃t

20



EMA Momentum: Temperature is Independent of N

The temperature is determined by the total effect of a single
training gradient ĝ. With EMA momentum the totat contri-
bution of a single ĝt is

1

N

∞∑
i=0

(
1− 1

N

)i
= 1

Hence the gradient estimate ĝ has in fluence η for any value of
N .

If N is small the model does not change significantly in N
updates and temperature is independent of momentum pa-
rameter N .

21



Momentum

The theory of momentum is generally given in terms of second
order structure (gradient drift).

Taking second order structure into account (where the model
changes over N iterations) momentum can effect the training.

But the EMA parameterization reduces the effect of N on tem-
perature.



Vanilla SGD Momentum Parameterization

The standard (PyTorch) momentum SGD equations are

vt = µvt−1 + η ∗ ĝt µ is typically .9 or .99

Φt+1 = Φt − vt

Here v is velocity, 0 ≤ µ < 1 represents friction drag and ηĝ
is the acceleration generated by the gradient force.

23



Decoupling Learning rate, Batch Size, and Momentum

(Vanilla SGD parameterization of Momentum)

vt = µvt−1 + η ∗ ĝt µ is typically .9 or .99

Φt+1 = Φt − vt

η = (1− µ)Bη0

24



Momentum and Temperature

η = (1− µ)Bη0

Emprical evidence for this setting of η is given in

Don’t Decay the Learning Rate, Increase the Batch
Size, Smith et al., 2018

25



Adam

Adaptive SGD with Momentum (Adam).

Adam is derived from RMSProp which first appeared in lecture
slides by Hinton.

“Adaptive” means that Different learning rates are used for
different parameters.

26



Adam

Adam uses the EMA parameterization of momentum.

PyTorch RMSProp also has momentum but with the vanilla
parameterization.

This choice of momentum parameterization may be an impor-
tant reason Adam is prefered in practice.

27



Adam (Without Bias Correction)

g̃t[i] =

(
1− 1

Ns

)
g̃t−1[i] +

1

Ns
ĝt[i] Ns typically 100 or 1000

st[i] =

(
1− 1

Ns

)
st−1[i] +

1

Ns
ĝt[i]

2 Ns typically 100 or 1000

Φt+1[i] = Φt[i]−
η√

st[i] + ε
g̃t[i]

28



Adam as Gradient Normalization

One can think of Adam as gradient normalization.

While normalization layers normalize the values, gradient nor-
malization normalizes the gradients.

29



Adam (Centered)

g̃t[i] =

(
1− 1

Ns

)
tildegt−1[i] +

1

Ns
ĝt[i] Ns typically 100 or 1000

st[i] =

(
1− 1

Ns

)
st−1[i] +

1

Ns
ĝt[i]

2 Ns typically 100 or 1000

Φt+1[i] = Φt[i]−
η√

st[i]−g̃[i]2 + ε
g̃t[i]

30



A Noise Analysis of Centered Adam

Φt+1[i] = Φt[i]−
η

σ[i] + ε
g̃t[i]

One interpretation of Adam involves the gradient noise vari-
ance σ[i].

A low-noise measurement estimate of the gradient is more cer-
tain.

A more certain gradient estimate needs less averaging.

Less averaging is equivalent to a larger learning rate.

31



Problem with the Analysis

Φ[i] -= η
g̃[i]√
Eĝ2

(1) Φ[i] -= η
g̃[i]

σ2[i]
(2)

The noise analysis yields (2) but (1) works better.

The “gradient normalization” interpretation seems more rele-
vant to practice.

However, the theory of gradient normalization seems unclear.

32



Bias Correction

Consider a standard moving average.

x̃0 = 0

x̃t =

(
1− 1

N

)
x̃t−1 +

(
1

N

)
xt

For t < N the average x̃t will be strongly biased toward zero.

33



Bias Correction

The following running average maintains the invariant that x̃t
is exactly the average of x1, . . . , xt.

x̃t =

(
t− 1

t

)
x̃t−1 +

(
1

t

)
xt

=

(
1− 1

t

)
x̃t−1 +

(
1

t

)
xt

We now have x̃1 = x1 independent of any x0.

But this fails to track a moving average for t >> N .

34



Bias Correction

The following avoids the initial bias toward zero while still
tracking a moving average.

x̃t =

(
1− 1

min(N, t)

)
x̃t−1 +

(
1

min(N, t)

)
xt

The published version of Adam has a more subtle form of bias
correction which yields the same effect.

35



Adam

g̃t[i] =

(
1− 1

min(t, Ng)

)
g̃t−1[i] +

1

min(t, Ng)
ĝt[i]

st[i] =

(
1− 1

min(t, Ns)

)
st−1[i] +

1

min(t, Ns)
ĝt[i]

2

Φt+1[i] = Φt −
η√

st[i] + ε
g̃t[i]

36



Decoupling Hyperparameters

The following reparameterization should be helpful for Adam.

Ng = min(1, N0
g/B)

Ns = min(1, N0
s/B)

ε = ε0
√
B

η = εBη0

37



Stochastic Gradient Descent (SGD)

The Classical Convergence Theorem

The Learning Rate as Temperature

Temperature, Batch Size, Momentum, and Adam

38



END


