
TTIC 31230 Fundamentals of Deep Learning

SGD Problems.

Problem 1: Running Averages. Consider a sequence of vectors x0, x1, . . .
and two running averages yt and zt defined by as follows for 0 < β < 1 and
γ > 0.

y0 = 0

yt+1 = βyt + (1− β)xt

z0 = 0

zt+1 = βzt + γxt

(a) Suppose that the values xt are drawn IID from a distribution with mean
vector x = E xt. Give values for

y = lim
t→∞

E yt

and
z = lim

t→∞
E zt

as functions of β, γ and x
Hint: Solve for E yt+1 as a function of E yt and assume that a limiting expec-
tation exists.

Solution:

E yt+1 = β E yt + (1− β) E xt

y = β y + (1− β) x

(1− β) y = (1− β) x

y = x

E zt+1 = β E zt + γ E xt

z = β z + γ x

(1− β) z = γ x

z =
γ

1− β
x

(b) Express zt as a function of yt, β and γ.

1



Solution:

zt+1 = β zt + γ xt

=

t∑
t′=0

γβt−t
′
xt′

=
γ

1− β

t∑
t′=0

(1− β)βt−t
′
xt

=
γ

1− β
yt+1

Problem 2. Variance of an exponential moving average. For two
independent random variables x and y and a weighted sum s = ax+ by we have

σ2
s = a2σ2

x + b2σ2
y

Now consider a runing average for computing µ̂1, . . . , µ̂t from x1, . . . , xt

µ̂0 = 0

µ̂t =

(
1− 1

N

)
µ̂t−1 +

1

N
xt

(a) Assume that the values of xt are independent and identically distributed
with variance σ2

x. We now have that µ̂t is a random variable depending on the
draws of xt. The random variable µ̂t has a variance σ2

µ̂,t. Assume that as t→∞
we have that σ2

µ̂,t converges to a limit (it does). Solve for this limit σ2
µ̂,∞. Your

solution should yield that for N = 1 we have σ2
µ̂,∞ = σ2

x (a sanity check).

Solution: The limit must satisfy

σ2
µ̂,∞ =

(
1− 1

N

)2

σ2
µ̂,∞ +

1

N2
σ2
x

We can then solve for σ2
µ̂,∞

σ2
µ̂,∞ =

(
1− 2

N
+

1

N2

)
σ2
µ̂,∞ +

1

N2
σ2
x

0 =

(
−2

N
+

1

N2

)
σ2
µ̂,∞ +

1

N2
σ2
x

=

(
(−2) +

1

N

)
σ2
µ̂,∞ +

1

N
σ2
x

σ2
µ̂,∞ =

1(
2− 1

N

)
N

σ2
x
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(b) Compare your answer to (a) with the variance of an average of N values of
xt defined by

µ̂ =
1

N

N∑
t=1

xt

Solution: For an average of N we have σ2
µ̂ = σ2

x/N . For N large we have that
the answer to part (a) is about half as large.

Problem 3. Reformulating Momentum as a Exponential Moving
Average. Consider the following update equation.

y0 = 0

yt =

(
1− 1

N

)
yt−1 + xt

(a) Assume that yt converges to a limit, i.e., that limt→∞ yt exists. If the input
sequence is constant with xt = c for all t ≥ 1, what is limt→∞ yt? Give a
derivation of your answer (Hint: you do not need to compute a closed form
solution for yt).

Solution:
The limit y∞ must satisfy

y∞ =

(
1− 1

N

)
y∞ + c

giving y∞ = Nc.

(b) yt is an exponential moving average of what quantity?

Solution: The update can be rewritten as

yt =

(
1− 1

N

)
yt−1 +

1

N
(Nxt)

so yt is an exponential moving average of Nxt.

(c) Express yt as a function of µt where µt is defined by

µ0 = 0

µt =

(
1− 1

N

)
µt−1 +

1

N
xt
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Solution: yt is an exponential moving average of Nxt which equals N times
the moving average of xt so we have

yt = Nµt

Problem 4. Bias Correction Consider the following update equation for
computing y1, . . . , yt from x1, . . . , xt.

yt =

(
1− 1

min(t,N)

)
yt−1 +

1

min(t,N)
xt

If xt = c for all t ≥ 1 give a closed form solution for yt.

Solution: For t = 1 we get y1 = x1 = c. We then get that yt+1 is a convex
combination of yt and xt which maintains the invariant that yt = c.

Problem 5. This problem is on interaction of learning rate and scaling of the
loss function.

(a) Consider vanilla SGD on cross entropy loss for classification with batch size
1 and no moment in which case we have

Φt+1 = Φt − η∇Φ lnPΦ(y|x)

Now suppose someone uses log base 2 (to get loss in bits) and uses the update

Φt+1 = Φt − η′∇Φ log2 PΦ(y|x)

Suppose that we find that leatning rate η works well for the natural log version
(with loss in nats). What value of η′ should be used in the second version with
loss measured in bits? You can use the relation that logb z = ln z/ ln b.

Solution: We have

−∆Φ = η′∇Φ log2 P (Φ)

= η′∇Φ lnP (Φ)/ ln 2

=
η′

ln 2
∇Φ lnP (Φ)

To make the two updates the same we set η′ = η ln 2

(b) Now consider the following simplified version of RMSprop where for each
parameter Φ[i] we have

Φt+1[i] = Φt[i]−
η

σi
∇ΦLΦ(xt, yt)
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where σi is exactly the standard deviation of ith component of the gradient as
defined by

µi = Ex,y
[
∇Φ[i] LΦ(x, y)

]
σi =

√
Ex,y

[(
∇Φ[i] LΦ(x, y)− µi

)2]
If we replace L by 2L what learning rate η′ should we use with loss 2L to get
the same temperature?

Solution: If we double the loss function we also double σi and we have η′ = η.
For RMSprop we get that the learning rate is (approximately) invariant to
scaling the loss function. It is not clear whether this has any significance.

Problem 6. Adaptive SGD. This problem considers the question of whether
the convergence theorem hold for adaptive methods — in the limit as the learn-
ing rate goes to zero do adaptive methods converge to a local minimum of the
loss.
Consider a generalization of RMSProp where we allow an arbitrary adaptation
with with different learning rates for different parameter values. More specifi-
cally consider the SGD update equation

(1) Φt+1 = Φt − η (A(Φt, xt, yt)�∇ΦL(Φt, xt, yt))

where 〈xt, yt〉 is the tth training pair, A(Φt, xt, yt) is an adaptation vector, and
� is the Haddamard product (x� y)[i] = x[i] y[i].
Consider the special case given by

A(Φ, x, y)[i] =
1√

s(Φ, x, y) + ε

s(Φ, x, y) =
1

d
||∇Φ L(Φ, x, y)||2

where d is the dimension of Φ.

(a) For the given interpretation of A(Φ, x, y), let Φ∗ be a parameter setting that
is a stationary point of the update equation (1) in the sense that expected update
over a random draw from the population is zero. Write this stationary condition
on Φ∗ explicitly as an expectation equaling zero under the given interpretation
of A(Φ, x, y).

Solution:

E〈x, y〉∼Pop

1√
s(Φ∗, x, y) + ε

∇Φ L(Φ, x, y) = 0

(b) Is Φ∗ as defined in part (a) a stationary point of the original loss — a point
where the expected gradient of L(Φ∗, x, y) is equal to zero?
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Solution: No, the average a weighted sum is different from the average of an
unweighted sum and hence the fact that the weighted average is zero does not
imply that the average is zero.

(c) Do these observations have implications for the adaptive methods described
in this class. Explain your answer.

Solution: Yes, the example considered here is just a special case of RMSProp
or Adam which are in fact not guaranteed to converge to a stationary point (or
local optimum) of the loss function.

Problem 7 This problem is on a non-standard form of adaptive learning rates.
In general when we consider the significance of a change ∆x to a number x
it is reasonable to consider the change as a percentage of x. For example, a
baseline annual raise in salary is often a percentage raise when different em-
ployees have significantly different salaries. So we might consider the following
“multiplicative update SGD” which we will write here for batch size 1.

Φt+1[i] = Φt[i]− η max(ε, |Φt[i]|) ĝ(Φ, xt, yt)[i] (1)

where ĝ(Φ, x, y) abbreviates the gradient ∇ΦL(Φ, x, y) where L(Φ, x, y) is the
loss for the training point (x, y) at parameter setting Φ, and where and ĝ(Φ, x, y)[i]
is the ith component of the gradient. For |Φt[i]| >> ε this is a multiplicative
update. Multiplicative updates have a long history and rich theory for mixtures
of experts prior to the deep revolution. However, I do not know of a citation
for the above multiplicative variant of SGD (let me know if you find one later).
The parameter ε allows a weight to flip sign — to pass through zero more easily.
Recall that a stationary point is a parameter setting where the total gradient is
zero. ∑

(x,y)∼Train

∇Φ L(x, y) = 0 (2)

(a) At a stationary point of the loss function, is the expected update of equation
(1) over a random draw of (xt, yt) always equal to zero. In other words, is
a stationary point of the loss function also a stationary point of the update
equation?

Solution: Yes, a stationary point of the loss function is also a stationary point
of the update equation.

E(x,y)∼Train η max(ε, |Φt[i]|) (∇Φ L(Φ, x, y)) [i]

= η max(ε, |Φ[i]|) E(x,y)∼Train (∇ΦL(Φ, x, y)) [i]

= 0
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(b) Consider an adaptive algorithm which makes the update proportional to
the loss. i.e.,

Φt+1 = Φt − η L(Φ, xt, yt) ĝ
t (3)

Is a stationary point of the loss function always a stationary point of the update
defined by (3)? Justify your answer.

You can assume that there exists a training set of two points (x1, y1) and (x2, y2)
and a stationary point of the loss function Φ with L(Φ, x1, y1) 6= L(Φ, x2, y2)
and ∇Φ(Φ, x1, y1) 6= ∇Φ(Φ, x2, y2).

Solution: No, the expected update can be non-zero at a stationary point of the
loss function. Weighing the updates by something that depends on the draw
of (x, y) effectively changes the weighting on the training points which changes
the stationarity condition. Writing this in English counts as a correct solution.
A formal counter example can be given using the assumed conditions:

E(x,y)∼Train η L(Φ, x, y) ∇Φ L(Φ, x, y)

= η
1

2
(L(Φ, x1, y1) (∇Φ L(Φ, x1, y1)) + L(Φ, x2, y2) (∇Φ L(Φ, x2, y2)))

= η
1

2
(L1 (∇Φ L(Φ, x2, y2)) + L2 (∇Φ L(Φ, x2, y2)))

= η(L1 + L2)
1

2

(
L1

L1 + L2
(∇Φ L(Φ, x2, y2)) +

L2

L1 + L2
(∇Φ L(Φ, x2, y2))

)
6= η (L1 + L2)

1

2
( ∇Φ L(Φ, x1, y1) +∇Φ L(Φ, x2, y2))

= 0

In Adam and RMSProp we have a weighting that depends on a moving average
of the second moment of the gradients. This is essentially a weighting that
depends on a random draw over the training data. It has been shown that
stationary points of Adam and RMSProp updates do not necessarily correspond
to stationary points of the loss function.
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