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TTIC 31230 Fundamentals of Deep Learning

SGD Problems.

Problem 1: Moving Averages. Consider a sequence of vectors x0, x1, . . .
and two running averages yt and zt defined by as follows for 0 < β < 1 and
γ > 0.

y0 = 0

yt+1 = βyt + (1− β)xt

z0 = 0

zt+1 = βzt + γxt

(a) Suppose that the values xt are drawn IID from a distribution with mean
vector x = E xt. Give values for

y = lim
t→∞

E yt

and
z = lim

t→∞
E zt

as functions of β, γ and x
Hint: Solve for E yt+1 as a function of E yt and assume that a limiting expec-
tation exists.
(b) Express zt as a function of yt, β and γ.

Problem 2. Variance of an exponential moving average. For two
independent random variables x and y and a weighted sum s = ax+ by we have

σ2
s = a2σ2

x + b2σ2
y

Now consider a runing average for computing µ̂1, . . . , µ̂t from x1, . . . , xt

µ̂0 = 0

µ̂t =

(
1− 1

N

)
µ̂t−1 +

1

N
xt

(a) Assume that the values of xt are independent and identically distributed
with variance σ2

x. We now have that µ̂t is a random variable depending on the
draws of xt. The random variable µ̂t has a variance σ2

µ̂,t. Assume that as t→∞
we have that σ2

µ̂,t converges to a limit (it does). Solve for this limit σ2
µ̂,∞. Your

solution should yield that for N = 1 we have σ2
µ̂,∞ = σ2

x (a sanity check).
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(b) Compare your answer to (a) with the variance of an average of N values of
xt defined by

µ̂ =
1

N

N∑
t=1

xt

Problem 3. Reformulating Momentum as a Exponential Moving
Average. Consider the following update equation.

y0 = 0

yt =

(
1− 1

N

)
yt−1 + xt

(a) Assume that yt converges to a limit, i.e., that limt→∞ yt exists. If the input
sequence is constant with xt = c for all t ≥ 1, what is limt→∞ yt? Give a
derivation of your answer (Hint: you do not need to compute a closed form
solution for yt).

(b) yt is an exponential moving average of what quantity?

(c) Express yt as a function of µt where µt is defined by

µ0 = 0

µt =

(
1− 1

N

)
µt−1 +

1

N
xt

Problem 4. Bias Correction Consider the following update equation for
computing y1, . . . , yt from x1, . . . , xt.

yt =

(
1− 1

min(t,N)

)
yt−1 +

1

min(t,N)
xt

If xt = c for all t ≥ 1 give a closed form solution for yt.

Problem 5. This problem is on interaction of learning rate and scaling of the
loss function.

(a) Consider vanilla SGD on cross entropy loss for classification with batch size
1 and no moment in which case we have

Φt+1 = Φt − η∇Φ lnPΦ(y|x)

Now suppose someone uses log base 2 (to get loss in bits) and uses the update

Φt+1 = Φt − η′∇Φ log2 PΦ(y|x)
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Suppose that we find that leatning rate η works well for the natural log version
(with loss in nats). What value of η′ should be used in the second version with
loss measured in bits? You can use the relation that logb z = ln z/ ln b.

(b) Now consider the following simplified version of RMSprop where for each
parameter Φ[i] we have

Φt+1[i] = Φt[i]−
η

σi
∇ΦLΦ(xt, yt)

where σi is exactly the standard deviation of ith component of the gradient as
defined by

µi = Ex,y
[
∇Φ[i] LΦ(x, y)

]
σi =

√
Ex,y

[(
∇Φ[i] LΦ(x, y)− µi

)2]
If we replace L by 2L what learning rate η′ should we use with loss 2L to get
the same temperature?

Problem 6. Adaptive SGD. This problem considers the question of whether
the convergence theorem hold for adaptive methods — in the limit as the learn-
ing rate goes to zero do adaptive methods converge to a local minimum of the
loss.
Consider a generalization of RMSProp where we allow an arbitrary adaptation
with with different learning rates for different parameter values. More specifi-
cally consider the SGD update equation

(1) Φt+1 = Φt − η (A(Φt, xt, yt)�∇ΦL(Φt, xt, yt))

where 〈xt, yt〉 is the tth training pair, A(Φt, xt, yt) is an adaptation vector, and
� is the Haddamard product (x� y)[i] = x[i] y[i].
Consider the special case given by

A(Φ, x, y)[i] =
1√

s(Φ, x, y) + ε

s(Φ, x, y) =
1

d
||∇Φ L(Φ, x, y)||2

where d is the dimension of Φ.

(a) For the given interpretation of A(Φ, x, y), let Φ∗ be a parameter setting that
is a stationary point of the update equation (1) in the sense that expected update
over a random draw from the population is zero. Write this stationary condition
on Φ∗ explicitly as an expectation equaling zero under the given interpretation
of A(Φ, x, y).

(b) Is Φ∗ as defined in part (a) a stationary point of the original loss — a point
where the expected gradient of L(Φ∗, x, y) is equal to zero?

3



(c) Do these observations have implications for the adaptive methods described
in this class. Explain your answer.

Problem 7. This problem is on a non-standard form of adaptive learning
rates. In general when we consider the significance of a change ∆x to a number
x it is reasonable to consider the change as a percentage of x. For example,
a baseline annual raise in salary is often a percentage raise when different em-
ployees have significantly different salaries. So we might consider the following
“multiplicative update SGD” which we will write here for batch size 1.

Φt+1[i] = Φt[i]− η max(ε, |Φt[i]|) ĝ(Φ, xt, yt)[i] (1)

where ĝ(Φ, x, y) abbreviates the gradient ∇ΦL(Φ, x, y) where L(Φ, x, y) is the
loss for the training point (x, y) at parameter setting Φ, and where and ĝ(Φ, x, y)[i]
is the ith component of the gradient. For |Φt[i]| >> ε this is a multiplicative
update. Multiplicative updates have a long history and rich theory for mixtures
of experts prior to the deep revolution. However, I do not know of a citation
for the above multiplicative variant of SGD (let me know if you find one later).
The parameter ε allows a weight to flip sign — to pass through zero more easily.
Recall that a stationary point is a parameter setting where the total gradient is
zero. ∑

(x,y)∼Train

∇Φ L(x, y) = 0 (2)

(a) At a stationary point of the loss function, is the expected update of equation
(4) over a random draw of (xt, yt) always equal to zero. In other words, is
a stationary point of the loss function also a stationary point of the update
equation?

(b) Consider an adaptive algorithm which makes the update proportional to
the loss. i.e.,

Φt+1 = Φt − η L(Φ, xt, yt) ĝ
t (3)

Is a stationary point of the loss function always a stationary point of the update
defined by (6)? Justify your answer.

You can assume that there exists a training set of two points (x1, y1) and (x2, y2)
and a stationary point of the loss function Φ with L(Φ, x1, y1) 6= L(Φ, x2, y2)
and ∇Φ(Φ, x1, y1) 6= ∇Φ(Φ, x2, y2).

Problem 8. This problem is on interaction of learning rate and scaling of the
loss function.

(a) Consider vanilla SGD on cross entropy loss for classification with batch size
1 and no moment in which case we have

Φt+1 = Φt − η∇Φ lnPΦ(y|x)
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Now suppose someone uses log base 2 (to get loss in bits) and uses the update

Φt+1 = Φt − η′∇Φ log2 PΦ(y|x)

Suppose that we find that leatning rate η works well for the natural log version
(with loss in nats). What value of η′ should be used in the second version with
loss measured in bits? You can use the relation that logb z = ln z/ ln b.

(b) Now consider the following simplified version of RMSprop where for each
parameter Φ[i] we have

Φt+1[i] = Φt[i]−
η

σi
∇ΦLΦ(xt, yt)

where σi is exactly the standard deviation of ith component of the gradient as
defined by

µi = Ex,y
[
∇Φ[i] LΦ(x, y)

]
σi =

√
Ex,y

[(
∇Φ[i] LΦ(x, y)− µi

)2]
If we replace L by 2L what learning rate η′ should we use with loss 2L to get
the same temperature?

Problem 9. This problem is on a non-standard form of adaptive learning
rates. In general when we consider the significance of a change ∆x to a number
x it is reasonable to consider the change as a percentage of x. For example,
a baseline annual raise in salary is often a percentage raise when different em-
ployees have significantly different salaries. So we might consider the following
“multiplicative update SGD” which we will write here for batch size 1.

Φt+1[i] = Φt[i]− η max(ε, |Φt[i]|) ĝ(Φ, xt, yt)[i] (4)

where ĝ(Φ, x, y) abbreviates the gradient ∇ΦL(Φ, x, y) where L(Φ, x, y) is the
loss for the training point (x, y) at parameter setting Φ, and where and ĝ(Φ, x, y)[i]
is the ith component of the gradient. For |Φt[i]| >> ε this is a multiplicative
update. Multiplicative updates have a long history and rich theory for mixtures
of experts prior to the deep revolution. However, I do not know of a citation
for the above multiplicative variant of SGD (let me know if you find one later).
The parameter ε allows a weight to flip sign — to pass through zero more easily.
Recall that a stationary point is a parameter setting where the total gradient is
zero. ∑

(x,y)∼Train

∇Φ L(x, y) = 0 (5)

(a) At a stationary point of the loss function, is the expected update of equation
(4) over a random draw of (xt, yt) always equal to zero. In other words, is
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a stationary point of the loss function also a stationary point of the update
equation?

(b) Consider an adaptive algorithm which makes the update proportional to
the loss. i.e.,

Φt+1 = Φt − η L(Φ, xt, yt) ĝ
t (6)

Is a stationary point of the loss function always a stationary point of the update
defined by (6)? Justify your answer.

You can assume that there exists a training set of two points (x1, y1) and (x2, y2)
and a stationary point of the loss function Φ with L(Φ, x1, y1) 6= L(Φ, x2, y2)
and ∇Φ(Φ, x1, y1) 6= ∇Φ(Φ, x2, y2).
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