
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Regularization: Early Stopping and Shrinkage

1

Fitting Finite Training Data

We take a training sample Train with N elements.

Φ∗(Train) = argmin
Φ

E(x,y)∼Train LΦ(x, y)

= argmin
Φ

1

N

∑
(x,y)∈Train

L(x, y)

The training loss is typically less than the test loss.

E(x,y)∼Train LΦ∗(Train)(x, y) < E(x,y)∼Pop LΦ∗(Train)(x, y)

2

Fitting Finite Training Data

An nth order polynomial can fit any n (pure noise) data points.

3

Cross Entropy Loss Vs. Task Loss

While SGD is generally done on cross entropy loss, one often
wants minimum error rate or some other leader board measure
(task loss).

The term “loss” often refers to cross entropy loss as opposed
to task loss (leader-board metric)

SGD typically optimizes cross-entropy loss because task loss is
typically not differentiable.

Some systems attempt to directly optimize task loss.

But training on (cross entropy) loss is generally effective for
minimizing task loss.

4

Early Stopping

During SGD one tracks validation loss and validation error.

One stops training when the validation error stops improving.

Empirically, loss reaches a minimum sooner than error.

5

Training Data, Validation Data and Test Data

In general one designs algorithms and tunes hyper-parameters
by training on training data and evaluating on validation data.

But it is possible to over-fit the validation data (validation loss
becomes smaller than test loss).

Kaggle withholds test data until the final contest evaluation.

6

Over Confidence

Validation error is larger than training error when we stop.

The model probabilities are tuned on training data statistics.

The probabilities are tuned to an unrealistically low error rate
and are therefore over-confident.

This over-confidence occurs before the stopping point and dam-
ages validation loss (as opposed to validation error).

7

Regularization

There is never harm in doing early stopping — one should
always do early stopping.

Regularization is a modification to the training algorithm de-
signed to reduce the training-validation gap and, in this way,
improve overall performance.

8

Shrinkage: L2 regularization

We first give a Bayesian derivation. We put a prior probability
on Φ and maximize the a-posteriori probability (MAP).

Φ∗ = argmax
Φ

p(Φ|〈x1, y1〉, . . . , 〈xn, yn〉)

= argmax
Φ

p(Φ, 〈x1, y1〉, . . . , 〈xn, yn〉)
p(〈x1, y1〉, . . . , 〈xn, yn〉)

= argmax
Φ

p(Φ, 〈x1, y1〉, . . . , 〈xn, yn〉)

9

Shrinkage: L2 regularization

Φ∗ = argmax
Φ

p(Φ, 〈x1, y1〉, . . . , 〈xn, yn〉)

= argmax
Φ

p(Φ)
∏
i

Pop(xi)PΦ(yi|xi)

=

(∏
i

p(xi)

)
argmax

Φ
p(Φ)

∏
i

PΦ(yi|xi)

= argmax
Φ

p(Φ)
∏
i

PΦ(yi|xi)

10

Shrinkage: L2 Regularization

Φ∗ = argmax
Φ

p(Φ)
∏
i

PΦ(yi|xi)

= argmin
Φ

∑
i

− lnPΦ(yi|xi)− ln p(Φ)

We now take a Gaussian prior

p(Φ) ∝ exp

(
−||Φ||

2

2σ2

)

11

Shrinkage: L2 Regularization

Φ∗ = argmin
Φ

n∑
i=1

− lnPΦ(yi|xi) +
||Φ||2

2σ2

= argmin
Φ

1

N

 n∑
i=1

− lnPΦ(yi|xi) +
||Φ||2

2σ2

= argmin
Φ

(
E〈x, y〉∼Train − lnPΦ(y|x)

)
+

1

2Nσ2
||Φ||2

12

Shrinkage: L2 Regularization

∇Φ E(x,y)∼Train

(
L(Φ, x, y) +

||Φ||2

2Nσ2

)

= E(x,y)∼Train

(
g(Φ, x, y) +

Φ

Nσ2

)

Φi+1 = Φi − η
(
ĝi −

1

Nσ2
Φi

)
The last term in the update equation is called “shrinkage”.

13

Robust Shrinkage

The PyTorch parameters are the learning rate η and the weight
decay γ:

Φi+1 = Φi − η
(
ĝ +

1

Nσ2
Φi

)
= Φi − η(ĝ − γΦi)

To make SGD with shrinkage robust to changes in training
size, batch size, learning rate (temperature) and momentum
we can use

η = (1− µ)Bη0 γ =
1

NTrainσ
2

where η0 is the robust temperature parameter and σ2 is the
robust shrinkage parameter.

14

END

