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Early Stopping meets Shrinkage

L1 Regularization and Sparsity

Ensembles



Shrinkage meets Early Stopping
Early stopping can limit ||®||.
But early stopping more directly limits ||® — $ipi¢||-
It seems better to take the prior on @ to be
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L1 Regularization

e MNP 10, = Zr@i\

argmax (3 HPq) (yilz;)

argmin Z —In Py (y;|x;

® ;

argmin = £(P) +
o NTyain

)

2]



L1 Regularization
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Sparsity
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For &* the gradient of the objective, and hence the average
update, must be zero:

O* = () if |gz‘ < )‘/NTrain
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g; = —()\/NTram)Sign(Cbi) otherwise
But in practice ®; will never be exactly zero.
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Ensembles

Train several models Ens = (&1, ..., &) from different
initializations and /or under different meta parameters.

We define the ensemble model by

Prys(ylz) = Z PCI)k (y|x) = B, Pily|z)

Ensemble models almost always perform better than any single
model.



Ensembles Under Cross Entropy Loss
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Ensembles Under Cross Entropy Loss
[t is important to note that
—In By Pp(ylz) < Ej —InPy(y|z)
for each individual pair (x,y).
Vz f(z) < g(z) is stronger than (E, f(z)) < (E, g(2)).

This may explain why in practice an ensemble model is typi-
cally better than any single component model.
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