TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Early Stopping meets Shrinkage

 L_1 Regularization and Sparsity

Ensembles

Shrinkage meets Early Stopping

Early stopping can limit $||\Phi||$.

But early stopping more directly limits $||\Phi - \Phi_{\text{init}}||$.

It seems better to take the prior on Φ to be

$$p(\Phi) \propto \exp\left(-\frac{||\Phi - \Phi_{\text{init}}||^2}{2\sigma^2}\right)$$

giving

$$\Phi_{t+1} = \Phi_t - \eta \hat{g} - \gamma (\Phi_t - \Phi_{\text{init}})$$

L_1 Regularization

$$p(\Phi) \propto e^{-\lambda||\Phi||_1} \qquad ||\Phi||_1 = \sum_i |\Phi_i|$$

$$\Phi^* = \underset{\Phi}{\operatorname{argmax}} \quad p(\Phi) \prod_i P_{\Phi}(y_i|x_i)$$

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \quad \left(\sum_i -\ln P_{\Phi}(y_i|x_i)\right) + \lambda ||\Phi||_1$$

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \quad \hat{\mathcal{L}}(\Phi) + \frac{\lambda}{N_{\text{Train}}} ||\Phi||_1$$

L_1 Regularization

$$\Phi^* = \underset{\Phi}{\operatorname{argmin}} \quad \hat{\mathcal{L}}(\Phi) + \frac{\lambda}{N_{\text{Train}}} ||\Phi||_1$$

$$\Phi_i = \eta \left(\hat{g}_i + \frac{\lambda}{N_{\text{Train}}} \operatorname{sign}(\Phi_i) \right)$$

$$\eta = (1 - \mu)B\eta_0$$

Sparsity

$$\Phi_i = \eta \left(\hat{g}_i + \frac{\lambda}{N_{\text{Train}}} \operatorname{sign}(\Phi_i) \right)$$

For Φ^* the gradient of the objective, and hence the average update, must be zero:

$$\Phi_i^* = 0$$
 if $|g_i| < \lambda/N_{\text{Train}}$

$$g_i = -(\lambda/N_{\text{Train}}) \operatorname{sign}(\Phi_i)$$
 otherwise

But in practice Φ_i will never be exactly zero.

Ensembles

Train several models Ens = (Φ_1, \ldots, Φ_K) from different initializations and/or under different meta parameters.

We define the ensemble model by

$$P_{\text{Ens}}(y|x) = \frac{1}{K} \sum_{k} P_{\Phi_k}(y|x) = E_k P_k(y|x)$$

Ensemble models almost always perform better than any single model.

Ensembles Under Cross Entropy Loss

$$\mathcal{L}(P_{\text{Ens}}) = E_{\langle x, y \rangle \sim \text{Pop}} - \ln P_{\text{Ens}}(y|x)$$

$$= E_{\langle x, y \rangle \sim \text{Pop}} - \ln E_k P_k(y|x)$$

$$\leq E_{\langle x, y \rangle \sim \text{Pop}} E_k - \ln P_k(y|x)$$

$$= E_k \mathcal{L}(P_k)$$

Ensembles Under Cross Entropy Loss

It is important to note that

$$-\ln E_k P_k(y|x) \le E_k - \ln P_k(y|x)$$

for each individual pair $\langle x, y \rangle$.

$$\forall z \ f(z) \leq g(z)$$
 is stronger than $(E_z \ f(z)) \leq (E_z \ g(z))$.

This may explain why in practice an ensemble model is typically better than any single component model.

\mathbf{END}