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Implicit Regularization
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Implicit Regularization

Any stochastic learning algorithm, such as SGD, determines a
stochastic mapping from training data to models.

The algorithm, especially with early stopping, can implicitly
incorporate a preference or bias for models.
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Implicit Regularization in Linear Regression

Linear regression (minimizing the L2 loss of a linear predictor)
where we have more parameters than data points has many
solutions.

But SGD converges to the minimum norm solution (L2-regularized
solution) without the need for explicit regularization.
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Implicit Regularization in Linear Regression

For linear regression SGD maintains the invariant that Φ is a
linear combination of the (small number of) training vectors.

Any zero-loss (squared loss) solution can be projected on the
span of training vectors to give a smaller (or no larger) norm
solution.

It can be shown that when the training vectors are linearly
independent any zero loss solution in the span of the training
vectors is a least-norm solution.
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Implict Priors

Let A be any algorithm mapping a training set Train to a
probability density p(Φ|Train).

For example, the algorithm might be SGD where we add a
small amount of noise to the final parameter vector so that
p(Φ|Train) is a smooth density.

But in general we can consider any leaning algorithm that
produces a smooth density p(Φ|Train).
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Implicit Priors

Drawing Train from PopN and Φ from P (Φ|Train) defines a
joint distribution on Train and Φ. We can take the marginal
distribution on Φ to be a prior distribution (independent of
any training data).

p(Φ) = E(
Train∼PopN

) p(Φ |Train)

It can be shown that the implicit prior p(Φ) is an optimal prior
for the PAC-Bayesian generalization guarantees applied to the
algorithm defining p(Φ|Train)
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A PAC-Bayes Analysis of Implicit Regularization

L(Train) = E〈x, y〉∼Pop, Φ∼p(Φ|Train) L(Φ, x, y)

L̂(Train) = E〈x, y〉∼Train, Φ∼p(Φ|Train) L(Φ, x, y)
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A PAC-Bayes Analysis of Implicit Regularization

With probability at least 1− δ over the draw of Train we have

L(Train) ≤ 10
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(
L̂(Train) +

5Lmax

NTrain
(KL(p(Φ|Train), p(Φ))) + ln

1

δ

)

=
10
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(
L̂(Train) +

5Lmax

NTrain

(
I(Φ,Train) + ln

1

δ

))

There is no obvious way to calculate this guarantee.

However, it can be shown that p(Φ) is the optimal PAC-
Bayeisan prior for given algorithm run on training data data
drawn from PopN .
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END


