
TTIC 31230, Fundamentals of Deep Learning

David McAllester

Generalization Theory

The Occam Generalization Guarantee

aka: The Free Lunch Theorem

1

Chomsky vs. Kolmogorov and Hinton

Noam Chomsky: Natural language grammar cannot be
learned by a universal learning algorithm. This position is
supported by the “no free lunch theorem”.

Andrey Kolmogorov, Geoff Hinton: Universal
learning algorithms exist. This position is sup-
ported by the “free lunch theorem”.

2

The No Free Lunch Theorem

Without prior knowledge, such as universal grammar, it is im-
possible to make a prediction for an input you have not seen
in the training data.

Proof: Select a predictor h uniformly at random from all
functions from X to Y and then take the data distribution to
draw pairs (x, h(x)) where x is drawn uniformly from X . No
learning algorithm can predict h(x) where x does not occur in
the training data.

3

The Occam Guarantee (Free Lunch Theorem)

Consider a classifier f written in Python with an arbitrarily
large standard library.

Let |f | be the number of bits needed to represent f (any com-
pression algorithm is allowed).

4

The Occam Guarantee (Free Lunch Theorem)

0 ≤ L(h, x, y) ≤ Lmax

L(h) = E(x,y)∼Pop L(h, x, y)

L̂(h) = E(x,y)∼Train L(h, x, y)

Theorem: With probability at least 1− δ over the draw of the
training data the following holds simultaneously for all f .

L(f) ≤ 10

9

(
L̂(f) +

5Lmax

NTrain

(
(ln 2)|f | + ln

1

δ

))

5

Occam Guarantee (Probability Form)

Code length is inter-convertable with with probability.

P (h) = 2−|h| or |h| = − log2P (h)

Instead of fixing the language (e.g., Python with a large li-
brary) we fix a prior P (h).

Theorem: With probability at least 1 − δ over the draw of
training data the following holds simultaneously for all h.

L(h) ≤ 10

9

(
L̂(h) +

5Lmax

NTrain
(− ln δP (h))

)
6

Occam vs. Bayes

For L(h, x, y) = − lnPh(y|x) ≤ Lmax we have

Occam: L(h) ≤ 10

9

(
L̂(h) +

5Lmax

NTrain
(− ln δP (h))

)
h∗ = argmin

h
L̂(h) +

5Lmax

NTrain
(− lnP (h))

Bayes: h∗ = argmax
h

P (h|Train)

h∗ = argmin
h
L̂(h) +

1

NTrain
(− lnP (h))

7

Proof

WLOG take Lmax = 1.

Define ε(h) =

√
2L(h) (− ln δP (h))

NTrain
.

By the relative Chernov bound we have

PTrain∼Pop

[
L̂(h) ≤ L(h)− ε(h)

]
≤ e
−NTrain

ε(h)2

2L(h) = δP (h).

8

Proof

PTrain∼Pop

(
L̂(h) ≤ L(h)− ε(h)

)
≤ δP (h).

PTrain∼Pop

(
∃h L̂(h) ≤ L(h)− ε(h)

)
≤
∑
h

δP (h) = δ

PTrain∼Pop

(
∀h L(h) ≤ L̂(h) + ε(h)

)
≥ 1− δ

9

Proof

L(h) ≤ L̂(h) +

√
L(h)

(
2 (− ln δP (h))

NTrain

)
using

√
ab = inf

λ>0

a

2λ
+
λb

2

we get

L(h) ≤ L̂(h) +
L(h)

2λ
+
λ (− ln δP (h))

NTrain

10

Proof

L(h) ≤ L̂(h) +
L(h)

2λ
+
λ (− ln δP (h))

NTrain

Solving for L(h) yields

L(h) ≤ 1

1− 1
2λ

(
L̂(h) +

λ

NTrain
(− ln δP (h))

)
Setting λ = 5 brings the leading factor to 10/9 which seems
sufficiently close to 1.

We can then scale the loss by Lmax to get the original form.

11

The PAC-Bayes Guarantee

Let p be any “prior” and q be any “posterior” on any (possibly
continuous) model space. Define

L(q) = Eh∼q L(h)

L̂(q) = Eh∼q L̂(h)

For any p and any λ > 1
2, with probability at least 1−δ over the

draw of the training data, the following holds simultaneously
for all q.

L(q) ≤ 1

1− 1
2λ

(
L̂(q) +

λLmax

NTrain

(
KL(q, p) + ln

1

δ

))
12

Adding Noise Simulates Limiting Precision

Assume 0 ≤ L(Φ, x, y) ≤ Lmax.

Define:

Lσ(Φ) = E (x,y)∼Pop, ε∼N (0,σ)d L(Φ + ε, x, y)

L̂σ(Φ) = E (x,y)∼Train, ε∼N (0,σ)d L(Φ + ε, x, y)

Theorem: With probability at least 1 − δ over the draw of
training data the following holds simultaneously for all Φ.

Lσ(Φ) ≤ 10

9

(
L̂σ(Φ) +

5Lmax

NTrain

(
||Φ||2

2σ2
+ ln

1

δ

))
13

Non-Vacuous Generalization Guarantees

Model compression has recently been used to achieve “non-
vacuous” PAC-Bayes generalization guarantees for ImageNet
classification — error rate guarantees less than 1.

Non-Vacuous PAC-Bayes Bounds at ImageNet Scale.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams,
Peter Orbanz

ICLR 2019

14

Implicit Regularization

Any stochastic learning algorithm, such as SGD, determines a
stochastic mapping from training data to models.

The algorithm, especially with early stopping, can implicitly
incorporate a preference or bias for models.

15

Implicit Regularization in Linear Regression

Linear regression (minimizing the L2 loss of a linear predictor)
where we have more parameters than data points has many
solutions.

But SGD converges to the minimum norm solution (L2-regularized
solution) without the need for explicit regularization.

16

Implicit Regularization in Linear Regression

For linear regression SGD maintains the invariant that Φ is a
linear combination of the (small number of) training vectors.

Any zero-loss (squared loss) solution can be projected on the
span of training vectors to give a smaller (or no larger) norm
solution.

It can be shown that when the training vectors are linearly
independent any zero loss solution in the span of the training
vectors is a least-norm solution.

17

Implicit Priors

Let A be any algorithm mapping a training set Train to a
probability density p(Φ|Train).

For example, the algorithm might be SGD where we add a
small amount of noise to the final parameter vector so that
p(Φ|Train) is a smooth density.

But in general we can consider any leaning algorithm that
produces a smooth density p(Φ|Train).

18

Implicit Priors

Drawing Train from PopN and Φ from P (Φ|Train) defines a
joint distribution on Train and Φ. We can take the marginal
distribution on Φ to be a prior distribution (independent of
any training data).

p(Φ) = E(
Train∼PopN

) p(Φ |Train)

It can be shown that the implicit prior p(Φ) is an optimal prior
for the PAC-Bayesian generalization guarantees applied to the
algorithm defining p(Φ|Train)

19

A PAC-Bayes Analysis of Implicit Regularization

L(Train) = E〈x, y〉∼Pop, Φ∼p(Φ|Train) L(Φ, x, y)

L̂(Train) = E〈x, y〉∼Train, Φ∼p(Φ|Train) L(Φ, x, y)

20

A PAC-Bayes Analysis of Implicit Regularization

With probability at least 1− δ over the draw of Train we have

L(Train) ≤ 10

9

(
L̂(Train) +

5Lmax

NTrain
(KL(p(Φ|Train), p(Φ))) + ln

1

δ

)

=
10

9

(
L̂(Train) +

5Lmax

NTrain

(
I(Φ,Train) + ln

1

δ

))

There is no obvious way to calculate this guarantee.

However, it can be shown that p(Φ) is the optimal PAC-
Bayeisan prior for the given algorithm run on training data
data drawn from PopN .

21

Over Confidence and Calibration

Validation error is larger than training error when we stop.

The model probabilities are tuned on training data statistics.

The probabilities are tuned to an unrealistically low error rate
and are therefore over-confident.

This over-confidence occurs before the stopping point and dam-
ages validation loss (as opposed to validation error).

22

Shrinkage: L2 regularization

We first give a Bayesian derivation. We put a prior probability
on Φ and maximize the a-posteriori probability (MAP).

Φ∗ = argmax
Φ

p(Φ|〈x1, y1〉, . . . , 〈xn, yn〉)

= argmax
Φ

p(Φ, 〈x1, y1〉, . . . , 〈xn, yn〉)
p(〈x1, y1〉, . . . , 〈xn, yn〉)

= argmax
Φ

p(Φ, 〈x1, y1〉, . . . , 〈xn, yn〉)

23

Shrinkage: L2 regularization

Φ∗ = argmax
Φ

p(Φ, 〈x1, y1〉, . . . , 〈xn, yn〉)

= argmax
Φ

p(Φ)
∏
i

Pop(xi)PΦ(yi|xi)

=

(∏
i

p(xi)

)
argmax

Φ
p(Φ)

∏
i

PΦ(yi|xi)

= argmax
Φ

p(Φ)
∏
i

PΦ(yi|xi)

24

Shrinkage: L2 Regularization

Φ∗ = argmax
Φ

p(Φ)
∏
i

PΦ(yi|xi)

= argmin
Φ

∑
i

− lnPΦ(yi|xi)− ln p(Φ)

We now take a Gaussian prior

p(Φ) ∝ exp

(
−||Φ||

2

2σ2

)

25

Shrinkage: L2 Regularization

Φ∗ = argmin
Φ

n∑
i=1

− lnPΦ(yi|xi) +
||Φ||2

2σ2

= argmin
Φ

1

N

 n∑
i=1

− lnPΦ(yi|xi) +
||Φ||2

2σ2

= argmin
Φ

(
E〈x, y〉∼Train − lnPΦ(y|x)

)
+

1

2Nσ2
||Φ||2

26

Shrinkage: L2 Regularization

∇Φ E(x,y)∼Train

(
L(Φ, x, y) +

||Φ||2

2Nσ2

)

= E(x,y)∼Train

(
g(Φ, x, y) +

Φ

Nσ2

)

Φi+1 = Φi − η
(
ĝi −

1

Nσ2
Φi

)
The last term in the update equation is called “shrinkage”.

27

Decoupling Shrikage and Training Data Size
The PyTorch parameters are the learning rate η and the weight
decay γ:

Φi+1 = Φi − η
(
ĝ +

1

Nσ2
Φi

)
= Φi − η(ĝ − γΦi)

To make SGD with shrinkage robust to changes in training
size, batch size, learning rate (temperature) and momentum
we can use

η = (1− µ)Bη0 γ =
1

NTrainσ
2

where η0 is the robust temperature parameter and σ2 is the
robust shrinkage parameter.

Ensembles

Train several models Ens = (Φ1, . . . , ΦK) from different
initializations and/or under different meta parameters.

We define the ensemble model by

PEns(y|x) =
1

K

∑
k

PΦk
(y|x) = Ek Pk(y|x)

Ensemble models almost always perform better than any single
model.

29

Ensembles Under Cross Entropy Loss

L (PEns) = E〈x, y〉∼Pop − lnPEns(y|x)

= E〈x, y〉∼Pop − lnEkPk(y|x)

≤ E〈x, y〉∼Pop Ek − lnPk(y|x)

= Ek L(Pk)

30

Ensembles Under Cross Entropy Loss

It is important to note that

− lnEk Pk(y|x) ≤ Ek − lnPk(y|x)

for each individual pair 〈x, y〉.

∀z f (z) ≤ g(z) is stronger than (Ez f (z)) ≤ (Ez g(z)).

This may explain why in practice an ensemble model is typi-
cally better than any single component model.

31

Double Descent

Reconciling modern machine learning practice and the bias-variance trade-
off

Mikhail Belkin, Daniel Hsu, Siyuan Ma, Soumik Mandal, arXiv December
2018.

Deep Double Descent: Where Bigger Models and More Data Hurt

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak,

Ilya Sutskever, ICLR 2020

32

Double Descent

Deep Double Descent: Where Bigger Models and More Data
Hurt

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang,
Boaz Barak, Ilya Sutskever, ICLR 2020

33

Double Descent

34

END

