
TTIC 31230 Fundamentals of Deep Learning

Regularization and Generalization Problems

PAC-Bayes Background Consider any probability distribution P (h) over a
discrete class H. Assume 0 ≤ L(h, x, y) ≤ Lmax. Define

L(h) = E(x,y)∼Pop L(h, x, y)

L̂(h) = E(x,y)∼Train L(h, x, y)

We now have the theorem that with probability at least 1− δ over the draw of
training data the following holds simultaneously for all h.

L(h) ≤ 10

9

(
L̂(h) +

5Lmax

N

(
ln

1

P (h)
+ ln

1

δ

))
(1)

This motivates

h∗ = argmin
h

L̂(h) +
5Lmax

Ntrain
ln

1

P (h)
(2)

The Bayesian maximum a-posteriori (MAP) rule is

h∗ = argmax
h

P (h)
∏

(x,y)∈Train

P (y|x, h) (3)

Problem 1. The Meaning of a PAC-Bayes Prior. Consider an optimal
hypothysis for the population distribution.

h∗ = argmin
h

E〈x, y〉∼Pop
L(h, x, y)

Equation (1) holds for any prior P . Consider two priors Plucky and Punlucky

where we have
Plucky(h∗) >> Punlucky(h∗)

Explain how equation (1) can hold for both of these priors.

Solution: The prior P should be interpreted as saying which hyopthesis will be
measured accurately first as Ntrain increases. We can interpret P as a “guess” as
to where we think the good hypotheses are. The prior P is not stating any actual
propability of where the optimal hypothesis is. We get accurate measurements
first for the hypotheses h for which P (h) is large. For Punlucky we get an accurate
measureent of L(h∗) only much later than we do under Plucky.

Problem 2. Code Length as Probability. Assume that a model h is
represented by a (compressed) file |h| bits long. Files have a specific length and
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no file is a proper prefix of any other file. We say that the set of file bit strings
is prefix free.

(a) Show that for any prefix-free representation of files as bit strings we have the
following Kraft inequality where the sum is over all possible files (of unbounded
size). ∑

h

2−|h| ≤ 1

Solution: Consider a probabilistic process which flips an unbiased coin to de-
termine a next bit until it generates a legal file bit string at which point it
outputs that file. This process generates file h with probability 2−|h| and, by
the prefix-free property, all files can be generated by this process. However, it
is possible that this process never terminates The Kraft inequality then follows
from

∑
h P (h) ≤ 1 where we also have P (divergence) +

∑
h P (h) = 1.

(b) rewrite (1) in terms of |h| where we take P (h) = 2−|h|.

Solution:

L(h) ≤ 10

9

(
L̂(h) +

5Lmax

Ntrain

(
(ln 2)|h|+ ln

1

δ

))
(1)

Problem 3. Comparing Bayesian MAP to PAC-Bayes For L(h, x, y) =
− lnP (y|x, h) (cross entropy loss) rewrite (2) so as to be as similar to (3) as
possible. Note that (1) holds independent of any “truth” of the “prior” P .

Solution:

argmin
h

 1

N

∑
(x,y)∼Train

− lnP (y|x, h)

+
5Lmax

N
ln

1

P (h)

= argmax
h

 1

N

∑
(x,y)∼Train

lnP (y|x, h)

+
5Lmax

N
lnP (h)

= argmax
h

 ∑
(x,y)∼Train

lnP (y|x, h)

+ 5Lmax lnP (h)

= argmax
h

ln

P (h)5Lmax

∏
(x,y)∼Train

P (y|x, h)


= argmax

h
P (h)5Lmax

∏
(x,y)∼Train

P (y|x, h)
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Problem 4. Finite Precision Parameters.

(a) Consider a model where the parameter vector Φ has d parameters each of
which is represented by a 16 bit floating point number. Express the bound (1)
in terms of the dimension d assuming all parameter vectors are equally likely.

Solution:

L(Φ) ≤ 10

9

(
L̂(Φ) +

5Lmax

N

(
16d ln 2 + ln

1

δ

))

(b) Assume a variable precision representation of numbers where Φ[i] is given
with |Φ[i]| bits. Express the bound (1) as a function of Φ assuming that P (Φ)
is defined so that each parameter is selected independently and that

P (Φ[i]) = 2−|Φ[i]|

.

Solution:

L(h) ≤ 10

9

(
L̂(h) +

5Lmax

Ntrain

(
ln 2|Φ|+ ln

1

δ

))
|Φ| =

∑
i

|Φ[i]|

(c) Repeat part (a) but for a model with I parameters represented by Φ[i] =
Ψ[k[i]] where k[i] is an integer index with 0 ≤ k[i] ≤ K − 1 and where Ψ[k]
is a b-bit floating point number. We define a prior probability on models by
selecting each k[i] uniformily from the integers from 0 to K − 1 and selecting
Ψ[k] uniformly from all b-fit floating point numbers.

Solution:

L(h) ≤ 10

9

(
L̂(h) +

5Lmax

N

(
Kb ln 2 + I ln k + ln

1

δ

))
For I >> K this is a much tighter bound than using floating point or even
integer representations of parameters. It is a much more compact representaiton
of the parameters.

Problem 5. Implicit Bias for SGD on Least Squares Regression.
Consider a hypothesis space H and a learning algorithm A that maps trainging
data to a hyothesis in H. Write A(Train) for the result of running algorithm A
on training data Train. Also consider a given population distribution Pop where
Train consists of Ntrain samples drawn independently from Pop. Let PA,Pop(h)
be the probability that A(Train) = h when Train is drawn at random from
Pop. The propbability distribution PA,Pop is independent of any particular
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training sample and can be used as a PAC-Bayes prior on H. A PAC-Bayes
prior represents a learning bias. The distribution PA,Pop is the implicit bias
of algorithm A run on population Pop.

In this problem we consider the implicit bias of the SGD algorithm applied to
least squares regression in the case where there are many more parameters than
data points. Least squares regression is defined by

Φ[J ]∗ = argmin
Φ

E〈x, y〉∼Train
(Φ[J ]x[J ]− y)2

To solve this optimization problem we consider using SGD where Φ is initialized
to the zero vector and we then apply the update

Φt+1 = Φt − η∇Φ (Φ>xy − y)2

= Φt − 2η(Φ>xt − y)xt

(a) In the case where Ntrain < d, where d is the dimension of Φ and x, define
a linear proper subspace of Rd such that we are guaranteed that Φt is in that
space for al t.

Solution: Since every update is in the direction of some input vector xt in the
training data, SGD maintains the invariant that Φt is some linear combination
of the training vectors x1, . . . xNtrain

. Since Ntrain < d the span of the training
vectors must be a proper subspace of Rd.
(b) Assume that the training vectors x1, . . . , xNtrain

are linearly independent. In
this case it can be shown that there exists a unique solution Φ∗ in the space
spanned by these vectors for which the square loss of the training data is zero
(if these were not independent then we would have more training points than
degrees of freedom in the space spanned by the input vectors). Let b1, . . . , bNtrain

be an orthonormal basis for the space spanned by the input vectors. For any
Φ ∈ Rd define the projection of Φ into the subspace by

Φπ =
∑
i

(Φ>bi)bi

Φ⊥ = Φ− Φπ

The convergence theorem for SGD now gives that SGD on least squares regres-
sion will converge in the limit to Φ∗. Show that SGD applied to least squared
regression has a form of implicit bias similar to L2 regression in that the result
Φ∗ is the least norm point in Rd for which the square loss of the training data
is zero.

Solution: Consider any Φ ∈ Rd for which the training loss is zero. The
projection Φπ must also have zero training loss because each training vector

4



can be written as a linear combination of basis vectors and Φ and Φπ have the
same inner product with each basis vector. Therefore Φπ = Φ∗. Futhermore
Φ = Φπ + Φ⊥ and

||Φ||2 = ||Φπ||2 + ||Φ⊥||2 = ||Φ∗||2 + ||Φ⊥||2

which gives that ||Φ|| ≥ ||Φ∗|| as desired.

Problem 6. Generalization Bounds for the realizable case. (25 points)
Consider a finite hyothesis class H and a population distribution Pop on pairs
〈x, y〉 such that for 〈x, y〉 drawn from the population and h ∈ H we have that h
makes a prediction for y which we will write as h(x). The error rate of hypothesis
h on the population is defined by

ErrPop(h) = P〈x, y〉∼Pop
(h(x) 6= y)

We draw a training sample Train consisting of NTrain pairs 〈x, y〉 drawn IID
from the population.

Errtrain(h) =
1

Ntrain

∑
〈x, y〉∈Train

1(h(x) 6= y)

(a) For a given hypothesis h with error rate ε what is the probability that
Errtrain(h) = 0.

Solution: (1− ε)Ntrain

(b) We now consider a fixed threshold ε and consider the hypotheses h satisfying
ErrPop ≥ ε. We will call these the “bad” hypotheses.

The simple form of the union bound is

P (A ∪B) ≤ P (A) + P (B)

This can be generalized to

P (∃z Q(z)) ≤
∑
z

P (Q(z))

where Q(z) is any statement about z.

Use your answer to (a) and the union bound to give an upper bound on the
probability that there exists a bad hypothesis h with Errtrain(h) = 0. You
solution should be stated in terms of ε, the number of elements |H| of H, and
the number of training pairs Ntrain. Simplify your solution using the inequality
1− ε ≤ e−ε.
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Solution:

P (∃h ErrPop ≥ ε, Errtrain(h) = 0)

≤
∑

h: ErrPop(h)≥ε

P (Errtrain(h) = 0)

≤ |H|(1− ε)Ntrain

≤ |H|e−Ntrainε

(c) Now consider a small positive number δ and solve for ε such that the proba-
bility that a bad hypothesis has zero training error is less than δ. Your solution
gives a value of ε such that with probability 1− δ over the draw of the training
error all hypothesis with zero training error have population error no lareger
than ε.

Solution:

δ = |H|e−Ntrainε

ε =
ln |H|+ ln 1

δ

Ntrain

Problem 7. This problem is on robust loss functions. With a robust loss one
identifies “outliers” in the data and “gives up” on modeling the outliers. In
particular we can consider the following bounded version of cross-entropy loss

L(Φ, x, y) = Lmax tanh

(
− lnPΦ(y|x)

Lmax

)
tanh(z) =

2

1 + e−2z
− 1.

For z ≥ 0 we have tanh(z) ≥ 0 and we have that the above robust loss is
non-negative and can never be larger than Lmax.

(a) Consider the function Lmax tanh( z
Lmax

). Use a first order Taylor expansion
of the tanh function about zero to show that for |z| << Lmax we have

Lmax tanh

(
z

Lmax

)
≈ z
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This implies that the robust cross entropy loss is essentially equal to the cross
entropy loss when the cross entropy loss is small compared to Lmax.

Solution: The first order Taylor expansion of the tanh function about zero is

tanh(u) ≈ u

yielding the desired result.

(b) Consider the case where the cross-entropy loss is large compared to Lmax.
For z >> 1 we have that the derivative tanh′(z) is essentially zero. What
parameter update is made on a training point whose cross entropy loss is large
compared to Lmax if we model tanh′(z) = 0 in such cases.

Solution: The update on a data point (x, y) is

Φt+1 = Φt − η∇ΦL(Φ, x, y)

At a point where the derivative of the sigmoid is essentially zero this update
will be essentially zero. So “outliers” do not effect the model parameters.

(c) Look up the PAC-Bayesian generalization guarantee that is stated in terms
of the L2 norm of the weight vector. Explain why the robust loss function
comes with a better PAC-Bayesian generalization guarantee. Intuitively, the
improvement in generalization is due to insensitivity to “outliers” (or things the
model cannot understand).

Solution: The L2 PAC-Bayeisan guarantee in the notes is

Lσ(Φ) ≤ 10

9

(
L̂σ(Φ) +

5Lmax

N

(
||Φ− Φinit||2

2σ2
+ ln

1

δ

))
Reducing Lmax both reduces L̂σ(Φ) and reduces the penalty for the model com-
plexity (the norm squared of the distance from the initialization).

(d) Curriculum learning is the idea that one first learns how to solve easy
problems and then gradually learns ever harder problems. At a high informal
level describe a learning algorithm based on the above robust loss function which
can be intuitively motivated as curriculum learning.

Solution: Easier problems should correspond to cases where the cross entropy
loss can be made small. So setting Lmax to be smallish will focus the model
on the easy problems while ignoring the hard problems. Gradually increasing
Lmax will gradually pay more attention to the harder problems.

Another possible answer is that holding Lmax fixed will focus first on the easy
problems ignoring the hard problems but as the understanding of easy problems
improves the harder problems become easy problems and we automatically grad-
ually pay attention to harder and harder problems even with a fixed value of
Lmax.
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Problem 8. This problem is on PAC-Bayes bounds for classifiers built on CLIP
using prompt engineering. CLIP is a joint probability model on images and
English descriptions (image captions). Clip is trained on a large corpus of
captioned images drawn from the web and defines a probability distribution
over captions c given an image x. We can use CLIP for image classification (as
in ImageNet) using “prompt engineering”. A “prompt” is caption specific to an
image label. For example the caption “this is an image of a cat” for the label
“cat” or “this is an image of a dog” for the label “dog”. For each image class
y we have a prompt (hypothetical caption) c(y). We can then label an image x
with class ŷ using the rule

ŷ(x) = argmax
y

PCLIP(c(y)|x)

Suppose that we search (somehow) over the captions c(y1), . . . , c(yn) assigned
to the n image classes y1, . . . , yn to find a set of captions minimizing the error
rate (0-1 loss) on a set of N labeled training images. Let L̂ be the error rate on
the training data. Also suppose that CLIP assigns a prior probability PCLIP(c)
to any caption c independent of any image. Consider the PAC-Bayes bound on
generalization loss for predictive rule h where the bound is guaranteed to hold
for all h with probability at least 1− δ.

L(h) ≤ 10

9

(
L̂(h) +

5Lmax

NTrain

(
− lnP (h) + ln

1

δ

))
Apply this rule to the CLIP image classifier using CLIP’s “prior probability”
on the caption space.

Solution:

L(h) ≤ 10

9

(
L̂(h) +

5

N

((∑
y

− lnPCLIP(c(y))

)
+ ln

1

δ

))

I am not proposing that searching over all captions is a good idea. Some nar-
rower prior is called for.

Problem 1: Generalization Bounds and The Lottery Ticket Hypoth-
esis. Suppose that we want to construct a linear classifier (a linear threshold
unit) for binary classification defined by

ŷα(x) =

 1 if
∑d
i=1 αifi(x) >= 0

−1 otherwise

where each αi is a scalar weight, fi(x) is a scalar value, and the functions fi are
(random) features constructed independent of any observed values of x or y.
We will assume a population distribution Pop of pairs 〈x, y〉 with y ∈ {−1, 1}
and a training set Train of N pairs drawn IID from pop.
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We can define both test and train losses (error rates).

L̂(α) = Ex,y∼Train 1[ŷα(xi) 6= yi]

L(α) = Ex,y∼Pop 1[ŷα(xi) 6= yi]

Assume finite precision arithmetic so that we have discrete rather than continu-
ous possible values of α. The course slides state that for any (prior) distribution
P on the values of α we have that with probability at least 1− δ over the draw
of the training data the following holds simultneously for all α.

L(α) ≤ 10

9

(
L̂(α) +

5Lmax

N

(
− lnP (α) + ln

1

δ

))
We will now incorporate the lottery ticket hypothesis into the prior distribution
on α by assuming that low training error can be achieved with some small subset
of the random features. More formally, we define a prior favoring sparse α —
cases where most weights are zero.

(a) To define P (α), first define a prior probability distribution P (s) over the
number s of nonzero values.

Solution: There are of course many solutions. A uniform distribution on
the numbers from 1 to d will work giving P (s) = 1/d. Another possibility is
P (s) = ε(1− ε)s which defines a distribution on all s ≥ 0.

(b) Given a specified number s of nonzero values, define a probability distribu-
tion P (U |s) where U is a subset of the random features with |U | = s.

Solution: A reasonable choice here is a uniform distribution on the
(
d
s

)
possi-

bilities giving P (U |s) = 1/
(
d
s

)
.

(c) Assuming that each nonzero value is represented by b bits, give a probability
distribution over P (α|U, s).

Solution: Here we can use the uniform distribution on the 2bs ways of assigning
numbers to the s nonzero weights in α giving P (α|U, s) = P (α|U) = 2−bs.

(d) Combine (a), (b) and (c) to define P (α).

Solution: Under P (s) = 1/d we get P (α) = 1

d(d
s)2bs

and using
(
d
s

)
≤ ds we get

P (α) ≥ 1
dds2bs = 1

ds+12bs .

Under P (s) = ε(1−ε)s we get P (α) = ε(1−ε)s

(d
s)2bs

and using
(
d
s

)
≤ ds P (α) ≥ ε(1−ε)s

ds2bs

(e) Plug your answer to (c) into the above generalization bound to get a bound
in terms of the number of random features d, the number s of nonzero values
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of α, and the number b of bits used to represent each nonzero value and any
additional parameters used in defining your distributions.

Solution: Under P (s) = 1/d we get

L ≤ 10

9

(
L̂+

5

N

(
ln d+ ln

(
d

s

)
+ sb ln 2 + ln

1

δ

))

≤ 10

9

(
L̂+

5

N

(
(s+ 1) ln d+ sb ln 2 + ln

1

δ

))
Under P (s) = ε(1− ε)s we get

L ≤ 10

9

(
L̂+

5

N

(
ln

1

ε
+ s ln

1

1− ε
+ ln

(
d

s

)
+ sb ln 2 + ln

1

δ

))

≤ 10

9

(
L̂+

5

N

(
ln

1

ε
+ s ln

1

1− ε
+ s ln d+ sb ln 2 + ln

1

δ

))
Note that in either case the bound is logarithmic in d allowing d to be extremely
large. The choice of the uniform distribution for s is simpler and gives a com-
pletely satisfactory result. However there are regimes in which the second prior
on s is very slightly better.
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