
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Automn 2020

Generalization and Regularization

1

Chomsky vs. Kolmogorov and Hinton

Noam Chomsky: Natural language grammar cannot be
learned by a universal learning algorithm. This position is
supported by the “no free lunch theorem”.

Andrey Kolmogorov, Geoff Hinton: Universal
learning algorithms exist. This position is sup-
ported by the “free lunch theorem”.

2

The No Free Lunch Theorem

Without prior knowledge, such as universal grammar, it is im-
possible to make a prediction for an input you have not seen
in the training data.

Proof: Select a predictor h uniformly at random from all
functions from X to Y and then take the data distribution to
draw pairs (x, h(x)) where x is drawn uniformly from X . No
learning algorithm can predict h(x) where x does not occur in
the training data.

3

The Free Lunch Theorem

Consider a classifier f written in C++ with an arbitrarily large
standard library.

Let |f | be the number of bits needed to represent f .

Let Ê(f) ∈ [0, 1] be the error rate on an IID training set and
let E(f) be the population error rate.

Theorem: With probability at least 1− δ over the draw of the
training data the following holds simultaneously for all f .

E(f) ≤ 10

9

(
Ê(f) +

5

N

(
(ln 2)|f | + ln

1

δ

))
4

Training Data, Validation Data and Test Data

Good performance on training data does not guarantee good
performance on test data.

An nth order polynomial can fit any n (pure noise) data points.

5

Loss Vs. Error Rate (or BLEU Score)

While SGD is generally done on cross entropy loss, one often
wants minimum classification error or BLEU Score (for trans-
lation).

The term “loss” often refers to cross entropy loss as opposed
to error rate.

SGD optimizes loss because error is not differentiable.

Later we will discuss attempts to directly optimize error.

But training on loss is generally effective.

6

Early Stopping

Claudia Perlich

During SGD one tracks validation loss or validation error.

One stops training when the validation error stops improving.

Empirically, loss reaches a minimum sooner than error.

7

Training Data, Validation Data and Test Data

In general one designs algorithms and tunes hyper-parameters
by training on training data and evaluating on validation data.

But it is possible to over-fit the validation data (validation loss
becomes smaller than test loss).

Kaggle withholds test data until the final contest evaluation.

8

Over Confidence

Validation error is larger than training error when we stop.

The model probabilities are tuned on training data statistics.

The probabilities are tuned to an unrealistically low lower error
rate and are therefore over-confident.

This over-confidence occurs before the stopping point and dam-
ages validation loss.

9

Regularization

There is never harm in doing early stopping — one should
always do early stopping.

Regularization is a modification to the training algorithm de-
signed to reduce the training-validation gap and, in this way,
improving overall performance.

10

L2 Regularization

Will first give a Bayesian derivation. We put a prior probability
on Φ and maximize the posteriori probability (MAP).

Φ∗ = argmax
Φ

p(Φ|〈x1, y1〉, . . . , 〈xn, yn〉)

= argmax
Φ

p(Φ, 〈x1, y1〉, . . . , 〈xn, yn〉)

= argmax
Φ

p(Φ)
∏
i

PΦ(yi|xi)

= argmin
Φ
− ln p(Φ) +

∑
i

− lnPΦ(yi|xi)

11

L2 Regularization

Take a Gaussian prior

p(Φ) ∝ exp

(
−||Φ||

2

2σ2

)

Φ∗ = argmin
Φ

∑
i

− lnPΦ(yi|xi)− ln p(Φ)

= argmin
Φ

n∑
i=1

− lnPΦ(yi|xi) +
||Φ||2

2σ2

= argmin
Φ

E〈x, y〉∼Train − lnP (y|x) +
1

2Nσ2
||Φ||2

12

Applying SGD

∇Φ E(x,y)∼Train

(
L(Φ, x, y) +

||Φ||2

2Nσ2

)

= E(x,y)∼Train

(
g(Φ, x, y) +

Φ

Nσ2

)

Φ -= ηĝ +
η

Nσ2
Φ

13

Decoupling Hyperparameters

Φt+1 = Φt − ηĝ −
η

Nσ2
Φt = Φt − ηĝ − γΦt

We can the PyTorch shinkage parameter γ to be

γ =
η

NTrainσ
2

=
Bη0

NgNTrainσ
2

The decoupled shrinkage parameter σ should then be decou-
pled from the bath size B, the decoupled learning rate η0, the
momentum parameter Ng and the size of the training corpus
NTrain.

14

Shrinkage meets Early Stopping

Early stopping can limit ||Φ||.

But early stopping more directly limits ||Φ− Φinit||.

It seems better to take the prior on Φ to be

p(Φ) ∝ exp

(
−||Φ− Φinit||2

2σ2

)

giving

Φt+1 = Φt − ηĝ − γ(Φt − Φinit)

15

A Generalization Guarantee

Assume 0 ≤ L(Φ, x, y) ≤ Lmax.

Define:

L(Φ) = E (x,y)∼Pop, ε∼N (0,σ)d L(Φ + ε, x, y)

L̂(Φ) = E (x,y)∼Train, ε∼N (0,σ)d L(Φ + ε, x, y)

Theorem: With probability at least 1 − δ over the draw of
training data the following holds simultaneously for all Φ.

L(Φ) ≤ 10

9

(
L̂(Φ) +

5Lmax

Ntrain

(
||Φ− Φinit||2

2σ2
+ ln

1

δ

))
16

PAC-Bayesian Guarantees

In the PAC-Bayesian framework we assume a prior distribution
(or density) on models.

For any prior (true or not) selected before seeing the data, any
model with sufficiently large prior probability is guaranteed to
have the generalization loss near the training loss.

For the shrinkage bound the prior is p(Φ) ∝ exp

(
−||Φ−Φinit||2

2σ2

)
.

L(Φ) ≤ 10

9

(
L̂(Φ) +

5Lmax

N

(
||Φ− Φinit||2

2σ2
+ ln

1

δ

))
17

A Simpler Theorem

Consider any prior probability P (h) over an discrete class H.

Assume 0 ≤ L(h, x, y) ≤ Lmax.

Define:

L(h) = E(x,y)∼Pop L(h, x, y)

L̂(h) = E(x,y)∼Train L(h, x, y)

Theorem: With probability at least 1 − δ over the draw of
training data the following holds simultaneously for all h.

L(h) ≤ 10

9

(
L̂(h) +

5Lmax

N

(
ln

1

P (h)
+ ln

1

δ

))
18

Proof

Consider Lmax = 1 and define ε(h) by

ε(h) =

√√√√2L(h)
(

ln 1
P (h)

+ ln 1
δ

)
N

.

By the relative Chernov bound we have

PTrain∼Pop

(
L̂(h) ≤ L(h)− ε(h)

)
≤ e
−N ε(h)2

2L(h) = δP (h).

19

Proof

PTrain∼Pop

(
L̂(h) ≤ L(h)− ε(h)

)
≤ δP (h).

PTrain∼Pop

(
∃h L̂(h) ≤ L(h)− ε(h)

)
≤
∑
h

δP (h) = δ

PTrain∼Pop

(
∀h L(h) ≤ L̂(h) + ε(h)

)
≥ 1− δ

20

Proof

L(h) ≤ L̂(h) +

√√√√√√L(h)

2
(

ln 1
P (h)

+ ln 1
δ

)
N


using

√
ab = inf

λ>0

a

2λ
+
λb

2

we get

L(h) ≤ L̂(h) +
L(h)

2λ
+
λ
(

ln 1
P (h)

+ ln 1
δ

)
N

21

Proof

L(h) ≤ L̂(h) +
L(h)

2λ
+
λ
(

ln 1
P (h)

+ ln 1
δ

)
N

Solving for L(h) yields

L(h) ≤ 1

1− 1
2λ

(
L̂(h) +

λ

N

(
ln

1

P (h)
+ ln

1

δ

))
Setting λ = 5 and rescaling the loss gives the version on earlier
slides.

22

A Model Compression Guarantee

Let |Φ| be the number of bits used to represent Φ under some
fixed compression scheme.

Let P (Φ) = 2−|Φ|

L(Φ) ≤ 10

9

(
L̂(Φ) +

5Lmax

N

(
(ln 2)|Φ| + ln

1

δ

))

23

Adding Noise Simulates Limiting Precision

Assume 0 ≤ L(Φ, x, y) ≤ Lmax.

Define:

L(Φ) = E (x,y)∼Pop, ε∼N (0,σ)d L(Φ + ε, x, y)

L̂(Φ) = E (x,y)∼Train, ε∼N (0,σ)d L(Φ + ε, x, y)

Theorem: With probability at least 1 − δ over the draw of
training data the following holds simultaneously for all Φ.

L(Φ) ≤ 10

9

(
L̂(Φ) +

5Lmax

N

(
||Φ− Φinit||2

2σ2
+ ln

1

δ

))
24

A KL Divergence Bound
Let P be any “prior” and Q be any “posterior” on any model
space.
Define

L(Q) = Eh∼Q L(h)

L̂(Q) = Eh∼Q L̂(h)

For any P and any λ > 1
2, with probability at least 1− δ over

the draw of the training data, the following holds simultane-
ously for all Q.

L(Q) ≤ 1

1− 1
2λ

(
L̂(Q) +

λLmax

N

(
KL(Q,P) + ln

1

δ

))
25

L1 Regularization and Sparse Weights

p(Φ) ∝ e−λ||Φ||1 ||Φ||1 =
∑
i

|Φi|

Φ∗ = argmin
Φ

L̂(Φ) +
λ

Ntrain
||Φ||1

Φ -= η∇Φ L̂(Φ)

Φi -= (ηλ/Ntrain) sign(Φi) (shrinkage)

At equilibrium (sparsity is difficult to achieve with SGD)

Φi = 0 if |∂L/∂Φi| < λ/Ntrain
∂L/∂Φi = −(λ/Ntrain)sign(Φi) otherwise

26

Ensembles

Train several models Ens = (Φ1, . . . , Φk) from different ini-
tializations and/or under different meta parameters.

We define the ensemble model by

PEns(y|x) =
1

k

k∑
j=1

PΦi(y|x)

Ensemble models almost always perform better than any single
model.

27

Ensembles Under Cross Entropy Loss

For log loss we average the probabilities.

P (y|x) =
1

k

∑
i

Pi(y|x)

− logP is a convex function of P . For any convex L(P)
Jensen’s inequality states that

L

1

k

∑
i

Pi

 ≤ 1

k

∑
i

L(Pi)

This implies that the loss of the average model cannot be worse
(can only be better) than the average loss of the models.

28

Ensembles Under Cross Entropy Loss

By Jensen:

L

1

k

∑
i

Pi

 ≤ 1

k

∑
i

L(Pi)

However, in practice for each i we have

L

1

k

∑
i

Pi

 ≤ L(Pi)

29

Implicit Regularization

Any stochastic learning algorithm, such as SGD, determines a
stochastic mapping from training data to models.

The algorithm can implicitly incorporate a preference or bias
for models.

For example, solving linear regression with many more param-
eters than data points has many solutions.

But SGD finds converges to the minimum norm solution.

30

Implicit Regularization

SGD maintains the invariant that Φ is a linear combination of
the (small number of) training vectors.

Any zero-loss (squared loss) solution can be projected on the
span of training vectors to give a no larger norm solution.

It can be shown that any zero loss solution in the span of the
training vectors is a least-norm solution.

An Implicit Regularization Generalization Guarantee

Let H be a discrete set of classifiers.

Let A be an algorithm mapping a training set to a classifier.

Let P (h|A,Pop) be the probability over the draw of the train-
ing data that A(Train) = h.

Theorem: With probability at least 1− δ over the draw of the
training data we have

Err(A(Train)) ≤ 10

9

(
Êrr(A(Train))

+ 5
N

(
ln 1
P (A(Train)|A,Pop)

+ ln 1
δ

))

32

Dropout

Dropout can be viewed as an ensemble method.

To draw a model from the ensemble we randomly select a mask
µ with  µi = 0 with probability α

µi = 1 with probability 1− α

Then we use the model (Φ, µ) with weight layers defined by

yi = Relu

∑
j

Wi,j µjxj


33

Dropout Training

Repeat:

• Select a random dropout mask µ

• Φ -= ∇Φ L(Φ, µ)

Backpropagation must use the same mask µ used in the for-
ward computation.

34

Test Time Scaling

At train time we have

yi = Relu

∑
j

Wi,j µjxj


At test time we have

yi = Relu

(1− α)
∑
j

Wi,j xj


At test time we use the “average network”.

35

Dropout for Least Squares Regression

Consider simple least square regression

Φ∗ = argmin
Φ

E(x,y) Eµ (y − Φ · (µ� x))2

= E
[
(µ� x)(µ� x)>

]−1
E [y(µ� x)]

= argmin
Φ

E(x,y)(y − (1− α)Φ · x)2 +
∑
i

1

2
(α− α2)E

[
x2
i

]
Φ2
i

In this case dropout is equivalent to a form of L2 regularization
— see Wager et al. (2013).

36

Model Compression
Deep Compression: Compressing Deep Neural Networks With
Pruning, Trained Quantization and Huffman Coding, Han et
al., ICLR 2016.

• Compressed Models can be downloaded to mobile devices
faster and fit in lower-power CPU memory. (The motivation
of this paper).

• Sparse models may be more interpretable than dense mod-
els.

• Model size is a measure of model complexity and can be
viewed as a form of regularization.

VGG-16 is reduced by 49× from 552MB to 11.3MB with no
loss of accuracy.

37

Three Stages

• Sparsification by simple weight thresholding. (10× reduc-
tion).

• Trained Quantization (6× reduction).

• Huffman coding (40% reduction).

38

Quantization

They use 5 bits of numerical precision for the weights.

This is done by having a table of the 32 possible weight values.

We have to cluster the weights into 32 groups and decide on a
centroid value for each weight.

This is done with K-means clustering.

39

Retrain to Adjust Centroids

Run over the data again doing backpropagation to adjust the
table of the 32 possible weights.

This leaves the 5-bit code of each weight in the model un-
changed.

40

Huffman Coding

Different 5-bit numerical codes have different frequencies.

This can be viewed as distribution over the 32 code words.

We can reduce the average number of bits per weight using
fewer bits to code the more common weight values.

Huffman coding is applied to both the 5 bit weight coding and
a three bit code used in the sparse representation of the weight
matrices.

This results in about 5 bits per nonzero weight in a sparse
coding of the weight matrices.

41

Dense-Sparse-Dense
DSD: Dense-Sparse-Dense Training for Deep Neural Networks,
Han et al., ICLR 2017

1. Train a model.

2. Make the model sparse by weight thresholding.

3. Retrain the model holding the sparsity pattern fixed (still
32 bits per weight).

4. Go back to a dense model with all pruned weights initialized
to zero.

5. Retrain the dense model.

Results in significant performance improvements in a wide va-
riety of models.

42

Step 1

43

Step 2

44

Step 3

45

Step 4

46

Step 5

47

Results

48

Non-Vacuous Generalization Guarantees

Model compression has recently been used to achieve “non-
vacuous” PAC-Bayes generalization guarantees for ImageNet
classification — error rate guarantees less than 1.

Non-Vacuous PAC-Bayes Bounds at ImageNet Scale.

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams,
Peter Orbanz

ICLR 2019

49

Double Descent

Reconciling modern machine learning practice and the bias-variance trade-
off

Mikhail Belkin, Daniel Hsu, Siyuan Ma, Soumik Mandal, arXiv December
2018.

Deep Double Descent: Where Bigger Models and More Data Hurt

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak,

Ilya Sutskever, ICLR 2020

50

Double Descent

Deep Double Descent: Where Bigger Models and More Data
Hurt

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang,
Boaz Barak, Ilya Sutskever, ICLR 2020

51

Double Descent

52

Summary

There is never harm in doing early stopping — one should
always do early stopping.

Regularization is any modification to the training algorithm
motivated by reducing the training-validation gap.

While regularization modifications to training can be inspired
by theory, the theory is weak.

Regularization proposals should be evaluated empirically.

53

END

