
TTIC 31230 Fundamentals of Deep Learning

Problems for Graphical Models.

Problem 1. Dynamic Programing for HMMs Assume we have an input
sequence x1, . . . , xT and a phoneme gold label y1, . . . , yT with yt ∈ P. This
problem is simpler than CTC because the gold label has the same length as the
input sequence.

In an HMM we assume a hidden state sequence s1, . . . , sT with st ∈ S where
S is some finite sets of “hidden states”. Here will assume that then some deep
network has computed transition probabilities and emission probabilities.

PTrans(st+1 | st)

PEmit(yt | st)

We assume an initial state sinit and a stop state sstop such that s1 = sinit (before
emitting any phonemes). The length T is determined by when the hidden state
becomes sstop giving sT+1 = sstop.

For a given gold sequence y1, . . . , yT we define a “forward tensor” as

F [t, s] = P (y1, . . . , yt−1 ∧ st = s)

We have

F [1, sinit] = 1

F [1, s] = 0 for s 6= sinit

(a) Write a dynamic programming equation to compute F [t, s] from F [t− 1, s′]
for various values of s′.

(b) Express P (y1, . . . , yT ) in terms of F [t, s].

(c) EM for HMMs involves computing a “backward” tensor

B[t, s] = P (yt, . . . , yT | st = s).

Explain why, if the forward equations are written in a framework, we do not
need to also compute the backward tensor.

Problem 2. CTC for image labeling

Suppose that the training data consists of pairs (I, S) where I is an image and
S is a set of object types occuring in the image. For example S might be
{Person,Dog,Car}. To be concrete we can take C to be the set of image labels
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used in CIFAR 100 and take S to be a subset of C containing no more than five
labels (|S| ≤ 5). We want to do SGD on a model defining PΦ(S | I).

We will use a latent variable z[X,Y ] such that for pixel coordinates (x, y) we
have z[x, y] ∈ C ∪ {⊥}. For a given z[X,Y ] define S(z[X,Y ]) to be the set of
classes appearing in z[X,Y ], i.e., S(z[X,Y ]) = {c ∃ x, y z(x, y) = c}. Here the
“semantic segmentation” Z[X,Y ] is analogous to the phoneme sequence z[T ] in
CTC. Unlike the CTC model, the label S is a set rather than a sequence.

We assume a CNN (with convolutions of stride 1 to preserve spatial dimensions)
followed by a softmax at each pixel to get a probability PΦ(z[x, y] = c) for each
pixel location (x, y) and each c ∈ C ∪ {⊥} and where each pixel location has an
independent probability distribution over classes. To simplify notation we can
reshape the pixel locations into a linear sequence and replace z[X,Y ] by z[T ]
with T = X × Y so we have z[1], z[1], . . . , z[T ].

Define
St = {c ∈ C ∃t′ ≤ t z[t′] = c}

For U ⊆ S define
F [U, t] = P (St = U)

Note that for |S| ≤ 5 there are at most 32 possible values of U . Give dy-
namic programming equations defining F [U, 0] and defining F [U, t+ 1] in term
of F [U ′, t] for various U ′.

Problem 3. Pseudolikelihood of a one dimensional spin glass. We let
x̂ be an assignment of a value to every node where the nodes are numbered from
1 to Nnodes and for every node i we have x̂[i] ∈ {0, 1}. We define the score of x̂
by

f(x̂) =

N−1∑
i=1

1[x̂[i] = x̂[i+ 1]]

The probability distribution over assignments is defined by a softmax. We let
x̂[i := v] be the assignment identical to x̂ except that node i is assigned the
value v. The expression x̂[i] = v is either true or false depending on whether no
i is assigned value v in x̂. So these are quite different.

Pf (x̂) = softmax
x̂

f(x̂)

Pseudolikelihood is defined in terms of the softmax probability Pf as follows.

P̃f (x̂) =
∏
i

Pf (x̂[i] | x̂\i)

What is the pseudolikelihood of the all ones assignment under the definition of
f given above?
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Problem 4. Pseudolikelihood for images. Consider a semantic segmenta-
tion ŷ[i] on pixels i with ŷ[i] a semantic class label in {C1, . . . , CK}. We also
assume a scoring function sΦ on semantic segmentations defining

PΦ(ŷ) = softmax
ŷ

sΦ(ŷ)

Pseudolikelihood is defined by

P̃Φ(ŷ) =
∏
i

PΦ(ŷ[i] | ŷ\i)

where ŷ\i assigns a class to every pixel other than i, and ŷ[i := c] is the semantic
segmentation identical to ŷ except that pixel i is labeled with semantic class c.
In a typical graphical model for images we have

PΦ(ŷ[i] | ŷ\i) = PΦ(ŷ[i] | ŷ[N(i)])

where ŷ[N(i)] is ŷ restricted to those pixels which are neighbors of pixel i.

(a) show

PΦ(ŷ)∑
c PΦ(ŷ[i := c])

= softmax
c

sΦ(ŷ[i := c]) evaluated at c = y[i]

(b) How many scores need to be computed in the worst case for computing
PΦ(ŷ). Given the result of part (a), how many for computing P̃Φ(ŷ)?

(c) Consider a distribution on semantic segmentations where for each pixel the
class assigned to that pixel is uniquely determined by the classes of its neighbors.
Can this distribution be defined by a softmax over scores? Explain your answer.

(d) If PΦ is a distribution defined in some other way such that the class of each
pixel is completely determined by the other pixels, given a simple expression for
P̃Φ(ŷ) in the case where ŷ has nonzero probability under PΦ.

Problem 5. Pseudolikelihood for Monocular Distance Estimation.
(25 points) Here we are interested in labeling each pixed with a distance from
the camera. Each pixel i is to be labeled with a real number ŷ[i] > 0 giving the
distance in (say) meters from the camera to the point on the object displayed
by that pixel. We assume a neural network that computes for each pixel i
an expected distance µi and a variance σi > 0. For each pair of neighboring
pixels i and j the neural network computes a real number λ〈i, j〉 ≥ 0. For each

assignment ŷ of distances to pixels we then define the score s(ŷ) by

s(ŷ) =
∑

i∈nodes

−(ŷ[i]− µi)
2/σ2

i +
∑

〈i, j〉∈edges

−λ〈i, j〉|ŷ[i]− ŷ[j]|
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(a) This scoring function determines a continuous softmax distribution defined
by

p(ŷ) =
1

Z
es(ŷ)

where Z is an integral rather than a sum. What is the dimension of the space
to be integrated over in computing Z?

(b) We now consider pseudolikelihood for this problem. Give an expression
for the continuous conditional probability density on ŷ[i] for the distance ŷ[i]
conditioned on the value of the neighbors N(i) of node i. This probability is
written p(ŷ[i] | ŷ[N(i)]). You answer should be given as a function of the values
ŷ[j] for the nodes j neighboring i written j ∈ N(i). Write Z as an integral but
do not bother trying to solve it. What is the dimention of the integral for this
conditional probability?

Problem 6. Computing the Partition Function for a Chain Graph.
Consider a graphical model defined on a sequence of nodes n1, . . . , nT . We are
interested in “colorings” Ŷ which assign a color Ŷ[n] to each node n. We will
use y to range over the possible colors. Suppose that we assign a score s(Ŷ) to
each coloring defined by

s(Ŷ) =

(
T∑

t=1

SN [t, Ŷ[nt]]

)
+

(
T−1∑
t=1

SE [t, Ŷ[nt], Ŷ[nt+1]]

)

In this problem we derive an efficient way to exactly compute the partition
function

Z =
∑
Ŷ

es(Ŷ).

Let Ŷt range over colorings of n1, . . . nt and define the score of Ŷt by

s(Ŷt) =

(
t∑

s=1

SN [s, Ŷ[ns]]

)
+

(
t−1∑
s=1

SE [s, Ŷt[ns], Ŷt[ns+1]]

)

Now define Zt(y) by

Z1(y) = eS
N [1,y]

Zt+1(y) =
∑
Ŷt

es(Ŷt)eS
E [t,Ŷt[nt],y]eS

N [t+1,y]

(a) Give dynamic programming equations for computing Zt(y) efficiently. You
do not have to prove that your equations are correct — just writing the correct
equations gets full credit.
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(b) show that Z =
∑

y ZT (y)

Problem 7. Consider a probability distribution on structured labels Y[N ]
where Y[n] is either -1, 0 or 1. Consider a score function s(Y) defined by

s(Y) =

(
N−2∑
n=0

Y[n] Y[n+ 1]

)
+ Y[N − 1]Y[0]

We can think of this as a ring of edge potentials with no node potentials. We
are interested in the probability defined by the exponential softmax

Ps(Y) =
1

Zs
es(Y)

Zs =
∑
Y
es(Y)

(a) Given an expression for the negative log pseud-likelihood − ln P̃s(Y) where
Y is the constant assignment defined by Y[n] = 0 for all n. Your expression
should be a simple function of N .

(b) Repeat part (a) but for the constant structured label defined by Y[n] = 1.
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