
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Deep Graphical Models

aka, Energy Based Models

1



Energy Based Models

Energy based models are an alternative to autoregressive mod-
els.

An energy based model computes a score and the distributions
is defined by an exponentially large softmax.

Ps(Ŷ) = softmax
Ŷ

s(Ŷ) all possible Ŷ

cross-entropy loss = − lnPs(Y) gold label (training label) Y

Of course we cannot directly compute the exponentially large
softmax distribution.

2



Graphical Models

Graphical models are a form of energy based model where the
energy is computed by summing up local energies.

A subclass of graphical models allow the probability Ps(Y) to
be computed efficiently by dynamic programming.

3



Parsing and CKY

Consider the case where x is a sentence and y is a parse tree
for x. There are exponentially many possible parse trees for a
given sentence.

The Cocke–Kasami–Younger (CKY) algorithm is a dynamic
programming algorithm for finding the most probably parse
under a certain family of energy based models.

CKY is still the most accurate way to parse sentences where
the energy based model is computed by a deep network.

4



Speech Recognition and CTC

Consider the case where x is the sound wave from a microphone
and y is the transcription into written language. There are
clearly exponentially many possible transcriptions.

Connectionist Temporal classification (CTC) is a dynamic pro-
gramming algorithm for finding the most likely output under
a certain family of energy based models.

CTC is still used in many speech recognition systems.

5



Semantic Segmentation

We want to assign each pixel to one of L semantic classes.

For example “person”, “car”, “building”, “sky” or “other”.

6



Semantic Segmentation

Although semantic segmentation is not currently done with
energy based models, perhaps it should be.

Semantic segmentation is simpler than parsing or speech recog-
nition and will be used as a simple example of energy based
models.

The graphical models historically used for semantic segmenta-
tion do not support dynamic programming solutions.

7



Notation

x is an input (e.g. an image).

Ŷ [N ] is a potential structured label for x — a vector Ŷ [0], . . . , Ŷ [N−
1] with Ŷ [n] an integer in {1, . . . , L}.

For example n might range over the pixels of an image and
Ŷ [n] names one of L a semantic labels for pixel n.

Y [N ] is the gold label for input x — the structured label as-
signed to x in the training data.

8



Compactly Representing Scores

on Exponentially Many Labels

We will call n a “node”.

We will compute a “node potential” tensor sN [N,L] that holds
NL scores — a score for each possible assignment of a label `
to n.

We assume a set E of “edges” with E ⊆ N ×N .

We will compute an “edge potential” tensor sE[E,L, L] that
holds ELL scores — a score for each assignment of class labels
`1 and `2 to the two nodes in the edge e.

9



Computing Scores

s(Ŷ) =
∑
n

sN [n, Ŷ [n]] +
∑

〈n,m〉∈E
sE[〈n,m〉, Ŷ [n], Ŷ [m]]

The exponential softmax for scores of this form are intractible
in general — the partition function Zs requires summing over
an exponentially large set and computing Ps(Y) is #P hard.

10



Computing the Node and Edge Potential Tensors

For input x we use a network to compute the score tensors.

sN [N,L] = fNΦ (x)

sE[E,L, L] = fEΦ (x)

11



Back-Propagation Through Exponential Softmax

sN [I, L] = fNΦ (x)

sE[E,L, L] = fEΦ (x)

s(Ŷ) =
∑
n

sN [n, Ŷ [n]] +
∑

〈n,m〉∈Edges

sE[〈n,m〉, Ŷ [n], Ŷ [m]]

Ps(Ŷ) = softmax
Ŷ

s(Ŷ) all possible Ŷ

L = − lnPs(Y) gold label Y

We want the gradients sN .grad[N,L] and sE.grad[E,L, L].

12



END


