
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2020

Exponential Softmax Backpropagation:

The Model Marginals

1



Notation

x is an input (e.g. an image).

Ŷ [N ] is any label for x — a vector Ŷ [0], . . . , Ŷ [N − 1] with
Ŷ [n] an integer in {1, . . . , L}.

For example n might range over the pixels of an image and
Ŷ [n] names a semantic label of pixel n.

Y [N ] is the gold label for input x — the structured label as-
signed to x in the training data.
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Back-Propagation Through Exponential Softmax
We have node and edge score tensors computed by a deep
network.

sN [N,L] = fNΦ (x) sE[E,L, L] = fEΦ (x)

s(Ŷ) =
∑
n

sN [n, Ŷ [n]] +
∑

〈n,m〉∈Edges

sE[〈n,m〉, Ŷ [n], Ŷ [m]]

Ps(Ŷ) = softmax
Ŷ

s(Ŷ) all possible Ŷ

L = − lnPs(Y) gold label Y
For SGD we want to compute sN .grad[N,L] and sE.grad[E,L, L].
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Model Marginals Theorem

Theorem:

sN .grad[n, `] = PŶ∼Ps
( Ŷ [n] = ` )

−1[ Y [n] = ` ]

sE.grad[〈n,m〉, `, `′] = PŶ∼Ps
( Ŷ [n] = ` ∧ Ŷ [m] = `′ )

−1[ Y [n] = ` ∧ Y [m] = `′ ]

We need to compute (or approximate) the model marginals.
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Proof of Model Marginals Theorem

We consider the case of node marginals, the case of edge marginals
is similar.

sN .grad[n, `] = ∂L(Φ, x,Y) / ∂sN [n, `]

= ∂

(
− ln

1

Z
exp(s(Y))

)
/ ∂sN [n, `]

= ∂(lnZ − s(Y)) / ∂sN [n, `]

=

 1

Z

∑
Ŷ

es(Ŷ)
(
∂s(Ŷ)/∂sN [n, `]

)− (∂s(Y)/∂sN [n, `]
)
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Proof of Model Marginals Theorem

sN .grad[n, `] =

 1

Z

∑
Ŷ

es(Ŷ)
(
∂s(Ŷ)/∂sN [n, `]

)− (∂s(Y)/∂sN [n, `]
)

=

∑
Ŷ

Ps(Ŷ)
(
∂s(Ŷ)/∂sN [n, `]

)− (∂s(Y)/∂sN [n, `]
)

s(Ŷ) =
∑
n

sN [n, Ŷ [n]] +
∑

〈n,m〉∈Edges
sE[〈n,m〉, Ŷ [n], Ŷ [m]]

∂s(Ŷ)

∂sN [n, `]
= 1[Ŷ [n] = `]
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Proof of Model Marginals Theorem

sN .grad[n, `] =

 1

Z

∑
Ŷ

es(Ŷ)
(
∂s(Ŷ)/∂sN [n, `]

)− (∂s(Y)/∂sN [n, `]
)

∑
Ŷ

Ps(Ŷ)
(
∂s(Ŷ)/∂sN [n, `]

)− (∂s(Y)/∂sN [n, `]
)

= EŶ∼Ps1[Ŷ [n] = `]− 1[Y [n] = `]

= PŶ∼Ps(Ŷ [n] = `)− 1[Y [n] = `]
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Model Marginals Theorem

Theorem:

sN .grad[n, `] = PŶ∼Ps( Ŷ [n] = ` )

−1[ Y [n] = ` ]

sE.grad[〈n,m〉, `, `′] = PŶ∼Ps( Ŷ [n] = ` ∧ Ŷ [m] = `′ )

−1[ Y [n] = ` ∧ Y [m] = `′ ]
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END


