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Exponential Softmax Backpropagation:

The Model Marginals



Notation

r is an input (e.g. an image).

AN AN

Y[N] is any label for z — a vector Y[0],..., V[N — 1] with

AN

Y[n| an integer in {1,..., L}.

For example n might range over the pixels of an image and
Y[n| names a semantic label of pixel n.

Y[N] is the gold label for input & — the structured label as-
signed to x in the training data.



Back-Propagation Through Exponential Softmax
We have node and edge score tensors computed by a deep
network.
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softmax s())) all possible V)
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L = —1InPs()) gold label Y
For SGD we want to compute s’ .orad[N, L] and s .grad[E, L, L).
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Model Marginals Theorem

Theorem:
s grad[n, (] = Py p( Vin] =)
—1[ YIn] =10 |

sP.grad|(n,m), 0, 0] = Py p( Vil =€ A Vim] =" )
—1[ Yn] =€ A Y[m]=1"]

We need to compute (or approximate) the model marginals.



Proof of Model Marginals Theorem
We consider the case of node marginals, the case of edge marginals
is similar.
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Proof of Model Marginals Theorem
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Proof of Model Marginals Theorem
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Theorem:

Model Marginals Theorem

s .grad[n, (] = Py p( V[n] =
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