TTIC 31230, Fundamentals of Deep Learning
David McAllester, Autumn 2020

Monte-Carlo Markov Chain (MCMC) Sampling



Notation

r is an input (e.g. an image).

AN

Y|N]is a structured label for z — a vector V[],..., V[N —1].
(e.g., n ranges over pixels where )|n| is a semantic label of
pixel n.)

YV /n is the set of labels assigned by ) at indeces (pixels) other
than n.

V[n = /] is the structured label identical to ) except that it
assigns label ¢ to index (pixel) n.



Sampling From the Model

For back-propagation of — ()>) through the exponential
softmax defined by P, (y) &5 V) we have

s grad[n, 0] = PJ?’NPS< Vin]=1¢)
—1[ V[n] =y |

sP.grad|(n,m), 0,0 = Py p( Yl =0 A YVm=(")
—1[ Yin] =L A Vim] = ("]



MCMC Sampling

The model marginals, such as the node marginals Ps(Y[n] = 0),
can be estimated by sampling Y from Py())).

There are various ways to design a Markov process whose states
are the structured labels }V and whose stationary distribution

1s Ps.

Given such a process we can sample ) from Pq by running the
process past 1ts mixing time.

We will consider Metropolis MCMC and the Gibbs MCMC.
But there are more (like Hamiltonian MCMC).
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Metroplis MCMC

We assume a neighor relation on the structured labels Y and

let N() be the set of neighbors of structured label V.

For example, N (y) can be taken to be the set of assignments
V' that differ form ) on exactly one index (pixel) n

For the correctness of Metropolis MCMC we need that all
structured labels have the same number of neighbors and that
the neighbor relation is symmetric — )’ € N(Y) if and only

if Y e N



Metropolis MCMC

Pick an initial state :)>0 and for t > 0 do

1. Pick a neighbor ) € N(J) uniformly at random.
2.1f (V') > s(Vy) then Vpvq = )/

3. Ifs(;)A/’) < SQ/) then with probability eA_AS _ o (s(0)=s(I)
do Vi = V" and otherwise Vi1 =W



The Metropolis Markov Chain

AN

We need to show that Py()) = %680} ) is a stationary distri-
bution of this process.

Let Q()A/) be the distribution on states defined by drawing a
state from Ps and applying one stochastic transition of the
Metropolis process.

AN

We must show that Q(Y) = Ps()).



The Stationary Distribution

Let PTranS(y — ') denote the probability of transitioning
from y to y’ or more formally,

A aS aS

PTransQA}%y,):PO}tJrl:y,‘yy:y)

We can then write Q()) as



The Stationary Distribution
Z P PTranS y — y)

Ps(yl>PTransO>/ — j}/) + Z Ps<3>>PTranso> — j}/>
YEN(Y')

Ps<3>’> (1 - Zj}eN(y') PTranS<3>/ — 5}))

. + Z)}GN()}/) PS(.)A})PTrans(j} — jﬂ)



The Stationary Distribution

A ( PS(JA//> (1 — Z;)A}eN(y’) PTrans<:)>/ — jj))
QU = S

. + ZJAJGN(J}’) PS(JA})PTrans(j} — j}/)

[ P,())

= — Z?eN(Jf’) Ps(j}/)PTransoA}/ - j})

X + ZJ}GN()}’) Ps(JA})PTrans(j} — jﬂ)

— P,()') — flowout + flow in



Detailed Balance

Detailed balance means that for each pair of neighboring as-
signments ), )’ we have equal flows in both directions.

AN

PSOA}/)PTranS(y/ — j}) — PS<3>>PTranS(J> — j}/)

It we can show detailed balance we have that the flow out
equals the flow in and we get Q()’) = Ps()’) and hence P
is the stationary distribution.
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Detailed Balance

To show detailed balance we can assume without loss generality

that s()) > s().
We then have

A A

PV ) Priag¥ = ) = e (i 6A8>
1
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Gibbs Sampling

The Metropolis algorithm wastes time by rejecting proposed
MOoves.

Gibbs sampling avoids this move rejection.

In Gibbs sampling we select a node n at random and change
that node by drawing a new node value conditioned on the
current values of the other nodes.

We let )A/\n be the assignment of labels given by Y except that
no label is assigned to node n.

We let V[N (n)] be the assignment that ) gives to the nodes
(pixels) that are the neighbors of node n (connected to n by
an edge. )
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Gibbs Sampling
Markov Blanket Property:

Ps(Y[n] | Y\n) = Ps(¥[n] | YN (n)))

Gibbs Sampling, Repeat:

e Sclect n at random

o draw y from Ps(V[n] | Y\n) = Ps(V[n] | Y[N(n)))
e V[n] =y

This algorithm does not require knowledge of Z.

The stationary distribution is Ps.

14



END



