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Notation

x is an input (e.g. an image).

Ŷ [N ] is a structured label for x — a vector Ŷ [0], . . . , Ŷ [N−1].
(e.g., n ranges over pixels where Ŷ [n] is a semantic label of
pixel n.)

Ŷ/n is the set of labels assigned by Ŷ at indeces (pixels) other
than n.

Ŷ [n = `] is the structured label identical to Ŷ except that it
assigns label ` to index (pixel) n.
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Sampling From the Model

For back-propagation of − lnPs(Ŷ) through the exponential

softmax defined by Ps(Ŷ) = 1
Ze

s(Ŷ) we have

sN .grad[n, `] = PŶ ′∼Ps
( Ŷ ′[n] = ` )

−1[ Ŷ [n] = y ]

sE.grad[〈n,m〉, `, `′] = PŶ ′∼Ps
( Ŷ ′[n] = ` ∧ Ŷ ′[m] = `′ )

−1[ Ŷ [n] = ` ∧ Ŷ [m] = `′ ]
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MCMC Sampling

The model marginals, such as the node marginals Ps(Ŷ [n] = `),
can be estimated by sampling Ŷ from Ps(Ŷ).

There are various ways to design a Markov process whose states
are the structured labels Ŷ and whose stationary distribution
is Ps.

Given such a process we can sample Ŷ from Ps by running the
process past its mixing time.

We will consider Metropolis MCMC and the Gibbs MCMC.
But there are more (like Hamiltonian MCMC).
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Metroplis MCMC

We assume a neighor relation on the structured labels Ŷ and
let N(Ŷ) be the set of neighbors of structured label Ŷ .

For example, N(Ŷ) can be taken to be the set of assignments
Ŷ ′ that differ form Ŷ on exactly one index (pixel) n.

For the correctness of Metropolis MCMC we need that all
structured labels have the same number of neighbors and that
the neighbor relation is symmetric — Ŷ ′ ∈ N(Ŷ) if and only
if Ŷ ∈ N(Ŷ ′).
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Metropolis MCMC

Pick an initial state Ŷ0 and for t ≥ 0 do

1. Pick a neighbor Ŷ ′ ∈ N(Ŷt) uniformly at random.

2. If s(Ŷ ′) > s(Ŷt) then Ŷt+1 = Ŷ ′

3. If s(Ŷ ′) ≤ s(Ŷ) then with probability e−∆s = e−(s(Ŷ)−s(Ŷ ′))

do Ŷt+1 = Ŷ ′ and otherwise Ŷt+1 = Ŷt
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The Metropolis Markov Chain

We need to show that Ps(Ŷ) = 1
Ze

s(Ŷ) is a stationary distri-
bution of this process.

Let Q(Ŷ) be the distribution on states defined by drawing a
state from Ps and applying one stochastic transition of the
Metropolis process.

We must show that Q(Ŷ) = Ps(Ŷ).
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The Stationary Distribution

Let PTrans(Ŷ → Ŷ ′) denote the probability of transitioning
from Ŷ to Ŷ ′, or more formally,

PTrans(Ŷ → Ŷ ′) = P (Ŷt+1 = Ŷ ′ | Ŷy = Ŷ)

We can then write Q(Ŷ ′) as

Q(Ŷ ′) =
∑
Ŷ

Ps(Ŷ)PTrans(Ŷ → Ŷ ′)

8



The Stationary Distribution

Q(Ŷ ′) =
∑
Ŷ

Ps(Ŷ)PTrans(Ŷ → Ŷ ′)

= Ps(Y ′)PTrans(Ŷ ′ → Ŷ ′) +
∑

Ŷ∈N(Ŷ ′)

Ps(Ŷ)PTrans(Ŷ → Ŷ ′)

=


Ps(Ŷ ′)

(
1−

∑
Ŷ∈N(Y ′) PTrans(Ŷ ′ → Ŷ)

)
+
∑
Ŷ∈N(Ŷ ′) Ps(Ŷ)PTrans(Ŷ → Ŷ ′)
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The Stationary Distribution

Q(Ŷ ′) =


Ps(Ŷ ′)

(
1−

∑
Ŷ∈N(Y ′) PTrans(Ŷ ′ → Ŷ)

)
+
∑
Ŷ∈N(Ŷ ′) Ps(Ŷ)PTrans(Ŷ → Ŷ ′)

=



Ps(Ŷ ′)

−
∑
Ŷ∈N(Y ′) Ps(Ŷ ′)PTrans(Ŷ ′ → Ŷ)

+
∑
Ŷ∈N(Ŷ ′) Ps(Ŷ)PTrans(Ŷ → Ŷ ′)

= Ps(Ŷ ′) − flow out + flow in



Detailed Balance

Detailed balance means that for each pair of neighboring as-
signments Ŷ , Ŷ ′ we have equal flows in both directions.

Ps(Ŷ ′)PTrans(Ŷ ′→ Ŷ) = Ps(Ŷ)PTrans(Ŷ → Ŷ ′)

If we can show detailed balance we have that the flow out
equals the flow in and we get Q(Y ′) = Ps(Ŷ ′) and hence Ps
is the stationary distribution.
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Detailed Balance

To show detailed balance we can assume without loss generality
that s(Ŷ ′) ≥ s(Ŷ).

We then have

Ps(Ŷ ′)PTrans(Ŷ ′→ Ŷ) =
1

Z
es(Ŷ ′)

(
1

N
e−∆s

)
=

1

Z
es(Ŷ) 1

N

= Ps(Ŷ)PTrans(Ŷ → Ŷ ′)
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Gibbs Sampling

The Metropolis algorithm wastes time by rejecting proposed
moves.

Gibbs sampling avoids this move rejection.

In Gibbs sampling we select a node n at random and change
that node by drawing a new node value conditioned on the
current values of the other nodes.

We let Ŷ\n be the assignment of labels given by Ŷ except that
no label is assigned to node n.

We let Ŷ [N(n)] be the assignment that Ŷ gives to the nodes
(pixels) that are the neighbors of node n (connected to n by
an edge.)
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Gibbs Sampling

Markov Blanket Property:

Ps(Ŷ [n] | Ŷ\n) = Ps(Ŷ [n] | Ŷ [N(n)])

Gibbs Sampling, Repeat:

• Select n at random

• draw y from Ps(Ŷ [n] | Ŷ\n) = Ps(Ŷ [n] | Ŷ [N(n)])

• Ŷ [n] = y

This algorithm does not require knowledge of Z.

The stationary distribution is Ps.

14



END


