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Masked Language Models (MLMs)

BERT: Pre-training of Deep Bidirectional Transformers ...
Devlin et al., October 2018
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Masked Language Models (MLMs)

Autoregressive text generation requires the words to be gener-
ated one at a time (sequentially).

MLM allows the words to be generated in parallel.

Parallel generation of novel text is very low quality.

However, parallel generation in machine translation can have
comparable performance to autoregressive translation.

Parallel generation in translation can be faster than autore-
gressive translation.
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Masked Language Models

Consider a probability distribution on a block of text.

y = (w1, . . . , wT )

In BERT 15% of the words in a block of text are masked
and the masked words are predicted from the unmasked words
using a transformer model.
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Pseudo-Likelihood

MLM is closely reated to Pseudo-Likelihood (1975) and Gibbs
Sampling (1984).

For y = (w1, . . . , wT ) define

y−i = (w1, . . . , wi−1,M,wi+1, . . . wT )

where M is a fixed mask.

For a probability distribution P on strings we define the pseudo-
liklihood P̃ by

P̃ (y) =
∏
i

P (wi |y−i)
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Pseudo-Likelihood

P̃ (y) =
∏
i

P (wi |y−i)

Pseudo-likelihood is particularly relevant to training Markov
random fields (graphical models).

But pseudo-likelihood corresponds to the objective function of
MLMs with one mask per text block.

Φ∗ = argmin
Φ

Ey∼Pop − ln P̃Φ(y)

= argmin
Φ

∑
i

Ey∼Pop − lnPΦ(wi|y−i)
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Pseudo-Likelihood

Φ∗ = argmin
Φ

∑
i

Ey∼Pop − lnPΦ(wi|y−i)

Assuming universality we get

PΦ∗(wi|y−i) = Pop(wi | y−i)

7



Gibbs Sampling

PΦ∗(wi|y−i) = Pop(wi | y−i)

The ability to compute conditional probabilities does not im-
mediately provide any way to compute PΦ(y) or to sample y
from PΦ(y).

In principle sampling can be done with an MCMC process
called Gibbs sampling.
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Gibbs Sampling

Let y[i ← w] be the word sequence resulting from replacing
the ith word in the word sequence y by the word w.

Gibbs sampling is defined by stochastic state transition

yt+1 = yt[i← w]

i ∼ uniform on {1, . . . , T}
w ∼ PΦ(wi | y−i)
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Markov Processes

A Markov chain is an autoregressive probability distribution
on infite sequences s1, s2, s3, . . . defined by

P (s1) = P0(s1)

P (st+1|s1, . . . , st) = PT (st+1|st)

Here we are interested in the case where st is is the translation
sentence after t rounds of parallel updates.

This process defines a probability distribution Pt(s) on sen-
tences after t rounds of updates.
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Markov Processes

For a distribution Q on states (sentences) define P (Q) to be
the distribution on sentences defined by

P (Q)(s) = P (st+1 = s | st), st ∼ Q

A stationary distribution of a Markov process is a distribution
Q (on sentences in this example) such that P (Q) = Q. for

Any Markov chain (defined by transition probabilities on states)
that is “ergotic” in the sense that every state can reach every
state has a unique stationary distribution.
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Gibbs Sampling and Pseudo-Liklihood

Pseudo-liklihood defines a Gibbs Sampling Markov chain.

It is a theorem that if this Markov Chain is ergotic then its
stationary distribution equals the populaiton distribution.
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Markov Processes

If the conditional distributions allow any state (sentence) to
reach any state then the conditional probabilities determine a
unique distribution on strings with the given conditional prob-
abilities.

Furtermore, we can in principle sample from this distribution
by running the Gibbs Markov chain sufficiently long.
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Gibbs Sampling

For langauge modeling Gibbs sampling mixes too slowly — it
does not reach its stationary distribution in feasible time.

However, in the case of translation the distribution on y given
x is lower entropy and Gibbs sampling seems practicle.
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