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Widely Used VAEs

Diffusion Models: A diffusion model is a hierarchical Gaus-
sian VAE.

Vector Quantized VAEs: A VQ-VAE defines Penc(z|y) in
terms of vector quantization analogous to K-means clustering.
VQ-VAEs provide a translation from continuous data, such as
images, to token data that can be modelled with a transformer.
This is done in GPT-4o.

Auto-Regressive Language Models: An auto-regressive
language model, such as a transformer, is mathematically equiv-
alent to a hierarchical VAE.
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VAEs

A variational autoencoder (VAE) is defined by three parts:

• An encoder distribution Penc(z|y).

• A decoder distribution Pdec(y|z)

• A “prior” distribution Ppri(z)

VAE generation uses Ppri(z) and Pdec(y|z).

VAE training uses the encoder Penc(z|y).
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Two Joint Distributions

A VAE defines two joint distributions on y and z, namely
Pgen(y, z) and Penc(y, z) defined by

Pgen(y, z) = Ppri(z)Pdec(y|z)

Penc(y, z) = Pop(y)Penc(z|y)
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Training the Generator

Fix the encoder arbitrarily and train Pgen by cross entropy.

gen∗ = argmin
gen

E(y,z)∼Penc(y,z)

[
− lnPgen(y, z)

]
Under universality we have Pgen∗ = Penc and hence the gener-
ator distribution on y defined by gen∗ matches the population
distribution.

In a diffusion model the encoder just adds noise. The encoder
is not trained.
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The ELBO Loss

Pop(y) =
Pop(y)Penc(z|y)

Penc(z|y)
=

Penc(y, z)

Penc(z|y)

E(y,z)∼Penc [− ln Pop(y)] = E(y,z)∼Penc

[
− ln

Penc(y, z)

Penc(z|y)

]

H(y) ≤ E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]

The right hand side of the last line is called the ELBO Loss.
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The Variational Bayes Interpretation

The generator is interpreted as a Bayesian model where y is
evidence for z.

lnPgen(y) = ln
Pgen(y)Pgen(z|y)

Pgen(z|y)

= Ez∼Penc(z|y)

[
ln
Pgen(y, z)

Pgen(z|y)

]

≥ Ez∼Penc(z|y)

[
ln
Pgen(y,z)

Penc(z|y)

]

Hence the name evidence lower bound or ELBO.
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Fundamental Equations of Deep Learning

• Cross Entropy Loss: Φ∗ =

argmin
Φ

E(x,y)∼Pop [− lnPΦ(y|x)]

• GAN: gen∗ =

argmax
gen

min
disc

Ei∼{−1,1},y∼Pi [− lnPdisc(i|y)]

• VAE: pri∗, dec∗, enc∗ =

argmin
pri,dec,enc

E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]
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Training the Encoder

In diffusion models the encoder simply adds noise and is not
trained.

In a VQ-VAE the encoder is trained. A naive approach to
training the encoder is to optimize the ELBO loss.

enc∗ = argmin
enc

E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]
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Training the Encoder

enc∗ = argmin
enc

E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]

Unfortunately this optimization involves optimizing a sampling
distribution (the encoder). As with GANs, optimizing a sam-
pling distribution (such as a GAN generator) is subject to
mode collapse — the loss function is very forgiving of a fail-
ure of the sampling distribution to cover the desired space of
values.
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Gaussian VAEs

Gaussian VAEs, which are the original version from 2014, train
the encoder.

Gaussian VAEs solve the problem of optimizing a sampling dis-
tribution by sampling instead from fixed Gaussian noise. This
further allows expressing the ELBO loss as a “closed form” L2
loss which avoids the need to even sample the noise.

However, non-hierarchical Gaussian VAEs (with a single Gaus-
sian latent variable) produce poor results in practice. A dif-
fusion model is a hierarchical Gaussian VAEs which does not
train the encoder. Hierarchical Gaussian VAEs which train the
encoder can also produce good results.
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A Non-Hierarchical Gaussian VAE

Ppri(z) = N (0, I)

Penc(z|y) = N (ẑ(y), I)

Pdec(y|z) = N (ŷ(z), I)

In general we can use arbitrary Gaussians but this example
makes the math simple.
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Gaussian VAEs

E(y,z)∼Penc

[
− ln

Ppri(z)Pdec(y|z)

Penc(z|y)

]

= Ey∼Pop
[
KL(Penc(z|y), Ppri(z)) + Ez∼Penc(z|y) [− lnPdec(y|z)]

]

= Ey∼Pop

[
1

2
||ẑenc(y)||2 + Eε

[
1

2
||y − ŷdec(ẑenc(y) + ε))||2

]]
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Training the Encoder

In a VQ-VAE the encoder is traned jointly with the decoder
Pdec(y|z) but is trained independently of Ppri(z). Ppri(z) is
trained later using a transformer model. The encoder of a VQ-
VAE is closely related to K-means clustering. In a VQ-VAE
the encoder converts vectors to tokens so that a transformer
can be applied.

This minimal training of the encoder again exploits the fact
that under universality Pop(y) can be modelled fully for any
encoder.

A different approach to training the encoder, an ME-VAE, is
discussed below.
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Hierarchical VAEs

Hierarchical Gaussian VAEs which train the encoder are ex-
plored both theoretically and empirically by Vahdat and Kautz.

NVAE: A Deep Hierarchical Variational Autoencoder, Arash

Vahdat, Jan Kautz (NVIDIA, January 2021)

But diffusion models and autoregressive models are also in-
stances of hierarchical VAEs.
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Hierachical VAEs

[Sally talked to John]
→← [Sally talked to]

→← [Sally talked]
→← [Sally]

→← []

y
→← z1

→← · · · →← zN
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Hierarchical VAEs

y
→← z1

→← · · · →← zN

Encoder: Pop(y), Penc(z1|y),Penc(z2|z1), . . . , P (zN |zN−1).

Generator: Ppri(zN ), Pdec(zN−1|zN ), . . . , Pdec(z1|z2), Pdec(y|z1)

The encoder and the decoder define distributions Penc(y, z1, . . . , zN )
and Pgen(y, z1, . . . , zN ) respectively.
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Hierarchical ELBO Loss

H(y) = E(y,z1,...,zn)∼Penc

[
− ln

Pgen(y, z1, . . . , zn)

Penc(z1, . . . , zN |y)

]
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EM-VAEs

The use of minimal encoder training may reflect the mode
collapse problem of training a sampling distribution, such as a
GAN generator or a VAE encoder.

The situation might be different if a better method were avail-
able for training the encoder. Here I will propose a method for
training the encoder that avoids the mode collapse problem.
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EM-VAEs

We start with the following “optimum encoder” inequality.

Ey∼Pop,z∼Pgen(z|y)

[
− ln

Pgen(y, z)

Pgen(z|y)

]
≤ E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]

This implies P ∗enc(z|y) = Pgen(z|y) and universality gives

enc∗ = argmin
enc

E(y,z)∼Pgen
− lnPenc(z|y)
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EM-VAE

E: enc∗ = argmin
enc

E(y,z)∼Pgen
− lnPenc(z|y)

M: gen∗ = argmin
gen

E(y,z)∼Penc(y,z)

[
− lnPgen(y, z)

]
The classical EM algorithm is the case where we alternate
optimizing the encoder (the E step) and the generator (the
M step) and where the E step yields Penc(z|y) = Pgen(z|y)
exactly and where the M step cannot fully fit the population.

Here we can use SGD on these two objectives independent of
details of the models.
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Derivation of the Encoder Optimum

E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]
= E(y,z)∼Penc

[
− ln

Pgen(y, z)

Pgen(z|y)

]
+ Ey∼Pop KL(Penc(z|y), Pgen(z|y))

≥ E(y,z)∼Penc

[
− ln

Pgen(y, z)

Pgen(z|y)

]
= E(y,z)∼Penc

[− lnPgen(y)]

= Ey∼Pop,z∼Pgen(z|y) [− lnPgen(y)]

= Ey∼Pop,z∼Pgen(z|y)

[
− ln

Pgen(y, z)

Pgen(z|y)

]
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