
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2024

Variational Auto-Encoders (VAEs)

1

Widely Used VAEs

Diffusion Models: A diffusion model is a hierarchical Gaus-
sian VAE.

Vector Quantized VAEs: A VQ-VAE defines Penc(z|y) in
terms of vector quantization analogous to K-means clustering.
VQ-VAEs provide a translation from continuous data, such as
images, to token data that can be modelled with a transformer.
This is done in GPT-4o.

Auto-Regressive Language Models: An auto-regressive
language model, such as a transformer, is mathematically equiv-
alent to a hierarchical VAE.

2

VAEs

A variational autoencoder (VAE) is defined by three parts:

• An encoder distribution Penc(z|y).

• A decoder distribution Pdec(y|z)

• A “prior” distribution Ppri(z)

VAE generation uses Ppri(z) and Pdec(y|z).

VAE training uses the encoder Penc(z|y).

3

Two Joint Distributions

A VAE defines two joint distributions on y and z, namely
Pgen(y, z) and Penc(y, z) defined by

Pgen(y, z) = Ppri(z)Pdec(y|z)

Penc(y, z) = Pop(y)Penc(z|y)

4

Training the Generator

Fix the encoder arbitrarily and train Pgen by cross entropy.

gen∗ = argmin
gen

E(y,z)∼Penc(y,z)

[
− lnPgen(y, z)

]
Under universality we have Pgen∗ = Penc and hence the gener-
ator distribution on y defined by gen∗ matches the population
distribution.

In a diffusion model the encoder just adds noise. The encoder
is not trained.

5

The ELBO Loss

Pop(y) =
Pop(y)Penc(z|y)

Penc(z|y)
=

Penc(y, z)

Penc(z|y)

E(y,z)∼Penc [− ln Pop(y)] = E(y,z)∼Penc

[
− ln

Penc(y, z)

Penc(z|y)

]

H(y) ≤ E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]

The right hand side of the last line is called the ELBO Loss.

6

The Variational Bayes Interpretation

The generator is interpreted as a Bayesian model where y is
evidence for z.

lnPgen(y) = ln
Pgen(y)Pgen(z|y)

Pgen(z|y)

= Ez∼Penc(z|y)

[
ln
Pgen(y, z)

Pgen(z|y)

]

≥ Ez∼Penc(z|y)

[
ln
Pgen(y,z)

Penc(z|y)

]

Hence the name evidence lower bound or ELBO.

7

Fundamental Equations of Deep Learning

• Cross Entropy Loss: Φ∗ =

argmin
Φ

E(x,y)∼Pop [− lnPΦ(y|x)]

• GAN: gen∗ =

argmax
gen

min
disc

Ei∼{−1,1},y∼Pi [− lnPdisc(i|y)]

• VAE: pri∗, dec∗, enc∗ =

argmin
pri,dec,enc

E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]

8

Training the Encoder

In diffusion models the encoder simply adds noise and is not
trained.

In a VQ-VAE the encoder is trained. A naive approach to
training the encoder is to optimize the ELBO loss.

enc∗ = argmin
enc

E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]

9

Training the Encoder

enc∗ = argmin
enc

E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]

Unfortunately this optimization involves optimizing a sampling
distribution (the encoder). As with GANs, optimizing a sam-
pling distribution (such as a GAN generator) is subject to
mode collapse — the loss function is very forgiving of a fail-
ure of the sampling distribution to cover the desired space of
values.

10

Gaussian VAEs

Gaussian VAEs, which are the original version from 2014, train
the encoder.

Gaussian VAEs solve the problem of optimizing a sampling dis-
tribution by sampling instead from fixed Gaussian noise. This
further allows expressing the ELBO loss as a “closed form” L2
loss which avoids the need to even sample the noise.

However, non-hierarchical Gaussian VAEs (with a single Gaus-
sian latent variable) produce poor results in practice. A dif-
fusion model is a hierarchical Gaussian VAEs which does not
train the encoder. Hierarchical Gaussian VAEs which train the
encoder can also produce good results.

11

A Non-Hierarchical Gaussian VAE

Ppri(z) = N (0, I)

Penc(z|y) = N (ẑ(y), I)

Pdec(y|z) = N (ŷ(z), I)

In general we can use arbitrary Gaussians but this example
makes the math simple.

12

Gaussian VAEs

E(y,z)∼Penc

[
− ln

Ppri(z)Pdec(y|z)

Penc(z|y)

]

= Ey∼Pop
[
KL(Penc(z|y), Ppri(z)) + Ez∼Penc(z|y) [− lnPdec(y|z)]

]

= Ey∼Pop

[
1

2
||ẑenc(y)||2 + Eε

[
1

2
||y − ŷdec(ẑenc(y) + ε))||2

]]

13

Training the Encoder

In a VQ-VAE the encoder is traned jointly with the decoder
Pdec(y|z) but is trained independently of Ppri(z). Ppri(z) is
trained later using a transformer model. The encoder of a VQ-
VAE is closely related to K-means clustering. In a VQ-VAE
the encoder converts vectors to tokens so that a transformer
can be applied.

This minimal training of the encoder again exploits the fact
that under universality Pop(y) can be modelled fully for any
encoder.

A different approach to training the encoder, an ME-VAE, is
discussed below.

14

Hierarchical VAEs

Hierarchical Gaussian VAEs which train the encoder are ex-
plored both theoretically and empirically by Vahdat and Kautz.

NVAE: A Deep Hierarchical Variational Autoencoder, Arash

Vahdat, Jan Kautz (NVIDIA, January 2021)

But diffusion models and autoregressive models are also in-
stances of hierarchical VAEs.

15

Hierachical VAEs

[Sally talked to John]
→← [Sally talked to]

→← [Sally talked]
→← [Sally]

→← []

y
→← z1

→← · · · →← zN

16

Hierarchical VAEs

y
→← z1

→← · · · →← zN

Encoder: Pop(y), Penc(z1|y),Penc(z2|z1), . . . , P (zN |zN−1).

Generator: Ppri(zN), Pdec(zN−1|zN), . . . , Pdec(z1|z2), Pdec(y|z1)

The encoder and the decoder define distributions Penc(y, z1, . . . , zN)
and Pgen(y, z1, . . . , zN) respectively.

17

Hierarchical ELBO Loss

H(y) = E(y,z1,...,zn)∼Penc

[
− ln

Pgen(y, z1, . . . , zn)

Penc(z1, . . . , zN |y)

]

18

EM-VAEs

The use of minimal encoder training may reflect the mode
collapse problem of training a sampling distribution, such as a
GAN generator or a VAE encoder.

The situation might be different if a better method were avail-
able for training the encoder. Here I will propose a method for
training the encoder that avoids the mode collapse problem.

19

EM-VAEs

We start with the following “optimum encoder” inequality.

Ey∼Pop,z∼Pgen(z|y)

[
− ln

Pgen(y, z)

Pgen(z|y)

]
≤ E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]

This implies P ∗enc(z|y) = Pgen(z|y) and universality gives

enc∗ = argmin
enc

E(y,z)∼Pgen
− lnPenc(z|y)

20

EM-VAE

E: enc∗ = argmin
enc

E(y,z)∼Pgen
− lnPenc(z|y)

M: gen∗ = argmin
gen

E(y,z)∼Penc(y,z)

[
− lnPgen(y, z)

]
The classical EM algorithm is the case where we alternate
optimizing the encoder (the E step) and the generator (the
M step) and where the E step yields Penc(z|y) = Pgen(z|y)
exactly and where the M step cannot fully fit the population.

Here we can use SGD on these two objectives independent of
details of the models.

21

Derivation of the Encoder Optimum

E(y,z)∼Penc

[
− ln

Pgen(y, z)

Penc(z|y)

]
= E(y,z)∼Penc

[
− ln

Pgen(y, z)

Pgen(z|y)

]
+ Ey∼Pop KL(Penc(z|y), Pgen(z|y))

≥ E(y,z)∼Penc

[
− ln

Pgen(y, z)

Pgen(z|y)

]
= E(y,z)∼Penc

[− lnPgen(y)]

= Ey∼Pop,z∼Pgen(z|y) [− lnPgen(y)]

= Ey∼Pop,z∼Pgen(z|y)

[
− ln

Pgen(y, z)

Pgen(z|y)

]

22

END

