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Variational Auto-Encoders (VAEs)



Generative Al: Autoregression and GANs

A discrete autoregressive model can both generate samples and
compute probabilities.

This allows one to train a generative model by cross-entropy
loss.

But it is not obvious how to train a generative model of images
by cross-entropy loss.

The point of a VAE is to replace the adversarial loss of a GAN
with cross-entropy loss.



Generative Al for Continuous Data: VAEs

A variational autoencoder (VAE) is defined by three parts:

e An encoder distribution Pepc(2|y).
o A “prior” distribution ()
e A generator distribution Pyen(y|?)

VAE generation uses P,i(2) and Pgen(y|2) (like a GAN).
VAE training uses a “GAN inverter” Papc(2|y).
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Fixed Encoder Training

pri*, gen® = = argmin I

pri,gen

y~Pop(y),z~enc(z|y) [_ In Ppri<Z>Pgeﬂ(y‘Z)}

This is cross-entropy loss from Pop(y) Penc(2|y) to Pyi(2) Peen(y|2)

Universality gives

Ppri*(Z)Pgen*@‘Z) = Pop(y) Penc(2]y)

Hence sampling from P,i+(2) Pyen#(y]2) samples y from the
population.



Training the Encoder (the GAN Inverter)

Define the ELBO loss as follows (acronym described later).

~ Ppri('z)Pgen(y‘Z)
) = - Penc(2]y)

S RS S :
enc’, pri-,gen” = argmin B, _p,, . p (- £y 2)
enc,pri,gen

For any encoder, universality gives

Ppri*(z)Pgen*@’Z) = Pop(y) Penc(y]2)



Degrees of Freedom

Ppri(Z)Pgen(y’Z> = Pop(y) Penc(2]y)

Any joint distribution on (y, z) with the desired marginal on
y optimizes the bound.

However, if we fix the architecture of P,i(2)Pgen(y|2) to be
StyleGAN we can simultaneously train the parameters of the

SyleGAN generator and the StyleGAN inverter by cross-entropy
loss.



Bayesian Interpretation

VAEs were originally motivated by a Bayesian interpretation:
 P,i(2) is the Bayesian prior on hypothesis z.

e Pyen(y|z) is the propability of the “evidence” y given hy-
pothesis z.

e Ponc(z]y) is a model approximating the Bayesian posterior
on hypothesis z given evidence y.

The Bayesian motivation is to train Pepc(2]y) to approximate
Bayesian inference.



Bayesian Interpretation

Ppri,gen<y>Ppri,gen<Z ‘ y>

In Pyigen(y) = In
PIbE Ppri,gen(zly>

Prigen(2]Y)
_ EZN s h,l pr1 gen(fU) pri,gen _|_KL< 1 y) g y)
e e E19), Pl 1)

Prri gen(2]Y)
Z EzN > In pl, gen(y> D181
PenC( ’y) [ Penc<zly>

A Bayesian thinks of y as “evidence” for hypothesis z.
E. . p,.(z|y)— Ly, 2)] s called the evidence lower bound (ELBO).
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Posterior Collapse

Under the Bayesian interpretation we would like z to provide
useful information about (a causal origin of) y.

However the objective function only produces

Ppri(z)Pgen@’Z) = Pop(y) Penc(2|y)

For language models the generator can assign a meaningful
probability to a block of text y independent of z.

When we train a sentence encoder (a thought vector) as the
latent valriable of a language model VAE we can get a constant
(zero) thought vector.

This is called “posterior collapse”.
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The Reparameterization Trick

enc® = argmin £ n Ppri(z)Pgen@‘Z)
eTLC ?JNPOP@),ZNPenc(Z\y) PenC(Z’y)

Gradient descent on the encoder parameters must take into
account the fact that we are sampling from the encoder.

To handle this we sample noise € from a fixed noise distribution
and replace z with a determinstc function zepc(y, €)

GHC* pf]ﬁi< gen* p— argmin E Pprl(Z>Pgen(y|Z)

€,2=Zeonc(Y,€
enc,pri,gen / encly€) Pence(2|y)
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The Reparameterization Trick

| 1 Pori(2) Paen(y]2)
Y,€,2=Zenc(Y,€) PenC(Z’y>

* K * -
enc ,pri,gen’ = argmin &
enc,pri,gen

To get gradients we must have that Zenc(y, €) is a differentiable
function of the encoder parameters.

Optimizing the encoder is tricky for discrete z. Discrete z is
handled effectively in EM algorithms and general vector quan-
tization (VQ) methods.
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The KL-divergence Optimization

Pi(2) Poen(y|2)
p B i pri &
(y> zv Pene(2|y) Penc(z‘y)

= K L(Fenc(2|y), Ppi(2)) + By Pane(2]y) [_ In Pgen(y‘zﬂ

H?J — @gen(éenc(ya 6))H2

202

B [ Zenc(y) — '%prin L E
B 207 ‘

A closed-form expression for the KL term avoids sampling
noise.
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EM is Alternating Optimization of the ELBO Loss
Expectation Maximimization (EM) applies in the (highly spe-
cial) case where the exact posterior Py gen(2]y) is samplable
and computable. EM alternates exact optimization of enc and
the pair (pri, gen) in:

Pprigen(2, 9)
VAE: pri*, gen™ = argminmin F,, I
prigen enc  J7 Fone(2y) Pone(z]y)

: t+1 t+1 _ - . .
o A - a}%@? Ey’ ZNPpI‘it,geI1t<Z‘y) n Ppn,gen(za y>

Inference Update
(E Step) (M Step)
Peone(zly) = Pprit,gent<z‘y> Hold Pepe(z|y) fixed
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Generative Al for Continuous Data: Flow Models

gen”™ = arggllin EprOp(y) — In pgen(y)

Flow-based generative models work with Jacobians over con-
tinuous transformations (no ReLLUs) and can be directly trained
with cross-entropy loss.

But flow models have not caught on and we will not cover
them.
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Markovian VAEs

— = >
Y= 2] ¢ - 2N
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Markovian VAEs

Encoder: Pop(y), Penc(21|y), and Penc(2p41|2¢)-

Generator: Ppri<ZN)a Poen(2¢—1]2¢), Peen(y]z1).

The encoder and the decoder define distributions Pape(y, - - -

and FPyen(y, - . ., 2jy) respectively.
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Markovian VAEs

e autoregressive models

e diffusion models

e Byte VAEs (original here)

17



IN

E enc

E enc

E enc

—1In

Diffusion ELBO

Penc(y)Penc(Zla o 7ZN‘y)

—1In
Pone(z1, -+, 2n|y)

—In

Penc(y|zl>Penc(Zl|Z2) Tt Penc(ZN—llzN)Penc(ZN)]
Penc(21’227 y) e PenC(ZN71|ZN7 y)Penc(ZNLy)

chn(y‘zl)Pgon(Zl‘Z2> e chn(ZNllzN)chn(ZN)]
Penc<zl|227 y) e Penc(ZN—l‘ZNa y)Penc(ZN‘y)

( Eene [~ In Pyen(y]21)]
0+, Bae KL(Pane(2i-112i, y), Paen(2i-1]2))

\ +Eene KL(Penc(ZN‘y>upgen(ZN))
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Byte VAEs

A byte VAE is a numerical Markovian VAE with a determin-
istic encoder and where each z; is a vector of bytes.

To computing z;41(z;) we first compute a floating point vector

Z:"(#;—1) and then round each coordinate to the nearest byte.

~gen

We model —In Pgen(zi\ziﬂ) by Hél-em(,zz'_l) R (Zz'—l—l)HZ-

Although the model is discrete, this gives gradients on both
the encoder and the decoder. This can be viewed as a straight-

through gradient on the encoder.
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The Byte VAE ELBO

5 _1npgen<ZN7ZN—17”'7Z17y>
P -FEHC(217'°'7zqva)
~Popl— N Poen(2N, 2N —1,- -+, 21, Y)]

9 .
~Pop [y — 55" (21)] +Z 5=
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