Rate-Distortion Autoencoders (RDAs)
The Fundamental Equation for Continuous y

If y is continuous then the fundamental equation for estimating the distribution on y (cross entropy) involves continuous probability densities.

$$\Phi^* = \arg\min_{\Phi} E_{y \sim \text{pop}} - \ln p_{\Phi}(y)$$

This occurs in unsupervised pretraining for sounds and images.

But differential entropy and differential cross-entropy are conceptually problematic.
Rate-Distortion Autoencoders (RDAs)

A rate-distortion autoencoder (RDA) replaces differential cross-entropy with a bi-objective — a compression rate and the reconstruction distortion.

The primary example is lossy compression of images and audio.

A compressed image does not have all the information of the original and the reconstructed image is a “distorted” version of the original.

The rate is given by the size of the compressed image (in bits or bytes).
Rate-Distortion Autoencoders (RDAs)

We compress a continuous signal y to a bit string $\tilde{z}_\Phi(y)$.

We decompress $\tilde{z}_\Phi(y)$ to $y_\Phi(\tilde{z}_\Phi(y))$.

We can then define a rate-distortion loss.

$$\mathcal{L}(\Phi) = E_{y \sim \text{Pop}} |\tilde{z}_\Phi(y)| + \lambda \text{Dist}(y, y_\Phi(\tilde{z}_\Phi(y)))$$

where $|\tilde{z}|$ is the number of bits in the bit string \tilde{z}.
Common Distortion Functions

\[\Phi^* = \arg\min_\Phi E_{y \sim \text{Pop}} |\tilde{z}_\Phi(y)| + \lambda \text{Dist}(y, y_\Phi(\tilde{z}_\Phi(y))) \]

It is common to take

\[\text{Dist}(y, \hat{y}) = ||y - \hat{y}||^2 \quad (L_2) \]

or

\[\text{Dist}(y, \hat{y}) = ||y - \hat{y}||_1 \quad (L_1) \]
CNN-based Image Compression

These slides are loosely based on

Rounding a Tensor

Take $z_\Phi(y)$ can be a layer in a CNN applied to image y. $z_\Phi(y)$ can have with both spatial and feature dimensions.

Take $\tilde{z}_\Phi(y)$ to be the result of rounding each component of the continuous tensor $z_\Phi(y)$ to the nearest integer.

$$\tilde{z}_\Phi(y)[x, y, i] = \lfloor z_\Phi(y)[x, y, i] + 1/2 \rfloor$$
Rounding is not Differentiable

\[\Phi^* = \arg\min_{\Phi} E_{y \sim \text{Pop}} |\tilde{z}_\Phi(y)| + \lambda \text{Dist}(y, y_\Phi(\tilde{z}_\Phi(y))) \]

Because of rounding, \(\tilde{z}_\Phi(y) \) is discrete and the gradients are zero.

We will train using a differentiable approximation.
Rate: Replacing Code Length with Differential Entropy

\[\mathcal{L}_{\text{rate}}(\Phi) = E_{y \sim \text{Pop}} |\tilde{z}_\Phi(y)| \]

Recall that \(\tilde{z}_\Phi(y) \) is a rounding of a continuous encoding \(z_\Phi(y) \).

Any probability distribution on integers can be approximated by a continuous density \(p_\Phi \) on the reals. For example we can take \(p_\Phi \) to be continuous and piecewise linear so that the rate becomes differentiable.

\[|\tilde{z}_\Phi(y)| \approx \sum_{x,y,i} - \ln p_\Phi(z_\Phi(y)[x,y,i]) \]
Distortion: Replacing Rounding with Noise

We can make distortion differentiable by modeling rounding as the addition of noise.

\[L_{\text{dist}}(\Phi) = E_{y \sim \text{Pop}} \text{Dist}(y, y_{\Phi}(\tilde{z}_{\Phi}(y))) \]

\[\approx E_{y, \epsilon} \text{Dist}(y, y_{\Phi}(z_{\Phi}(y) + \epsilon)) \]

Here \(\epsilon \) is a noise vector each component of which is drawn uniformly from \((-1/2, 1/2)\).
Each point is a rate for an image measured in both differential entropy and discrete entropy. The size of the rate changes as we change the weight λ.
Distortion: Noise vs. Rounding

Each point is a distortion for an image measured in both a rounding model and a noise model. The size of the distortion changes as we change the weight λ.
JPEG at 4283 bytes or .121 bits per pixel
JPEG 2000 at 4004 bytes or .113 bits per pixel

JPEG 2000, 4004 bytes (0.113 bit/px), PSNR: 26.61 dB/33.88 dB, MS-SSIM: 0.8860
Deep Autoencoder at 3986 bytes or .113 bits per pixel

Proposed method, 3986 bytes (0.113 bit/px), PSNR: 27.01 dB/34.16 dB, MS-SSIM: 0.9039
Rate-Distortion Autoencoders (RDAs)

\[\Phi^* = \arg\min_{\Phi} E_{y \sim \text{pop}} - \ln P_{\Phi}(z_{\Phi}(y)) + \lambda \text{Dist}(y, y_{\Phi}(z_{\Phi}(y))) \]

\(z_{\Phi}(y) \) discrete.
END