
TTIC 31230 Fundamentals of Deep Learning

Problems for VAEs

Problem 1. Mutual Information as Channel Capacity

The mutual information between two random variables x and y is defined by

I(x, y) = Ex,y ln
P (x, y)

P (x)P (y)
= KL(P (x, y), P (x)P (y))

Mutual information has an interpretation as a channel capacity.

Suppose that we draw a random bit y ∈ {0, 1} with P (0) = P (1) = 1/2 and
send it across a noisy channel to a receiver who gets y′ = y ⊕ ε where ε is an
independent “noise variable” with ε ∈ {0, 1}, where ⊕ is exclusive or (y gets
flipped when ε = 1), and where the “noise” ε has a probability P of being 1.

(a) Solve for the channel capacity I(y, y′) as a function of P in units of bits.
When measured in bits, this channel capacity has units of bits received per
message sent.

Solution:

I(y, y′) = H(y)−H(y|y′)
H(y) = 1 bit

H(y|y′) = P (y = y′)(− log2 P (y = y′)) + P (y 6= y′)(−log2P (y 6= y′))

= P (ε = 0)(− log2 P (ε = 0)) + P (ε = 1)− log2P (ε = 1)

= (1− P) log2 1/(1− P) + P log2 1/P

= H(P)

(b) Explain why your answer to part (a) makes sense in terms of what the
receiver knows for P = 1/2 and when P = 1.

Solution: For P = 1/2 we have H(P) = 1 bit and I(y, y′) = H(y)−H(P) = 0
and the receiver knows nothing about y. For P = 1 we have H(P) = 0 and
I(y′, y) = 1 bit. Note that in this case y′ is 1 − y so y′ carries full information
about y.

Problem 2. A Variational Upper Bound on Mutual Information

1

(a) Consider an arbitrary distribution P (z, y). Show the variational equation

I(y, z) = inf
Q

Ey∼P (y)KL(P (z|y), Q(z))

where Q ranges over distributions on z. Hint: It suffices to show

I(y, z) ≤ EyKL(P (z|y), Q(z))

and that there exists a Q achieving equality.

Solution:

I(y, z)

= Ey∼pop KL(P (z|y), P (z))

= Ey,z∼P (z|y)

(
ln
P (z|y)

Q(z)
+ ln

Q(z)

P (z)

)

= Ey∼P (y) KL(P (z|y), Q(z)) +

(
Ey∼pop, z∼P (z|y) ln

Q(z)

P (z)

)
= Ey KL(P (z|y), Q(z)) + Ez∼P (z) ln

Q(z)

P (z)

= Ey KL(P (z|y), Q(z))−KL(P (z), Q(z))

≤ Ey∼P (y) KL(P (z|y), Q(z))

Equality is achieved when Q(z) = P (z).

(b) Consider a rate-distortion autoencoder.

Φ∗ = argmin IΦ(y, z) + λEy∼pop, z∼PΦ(z|y) Dist(y, yΦ(z)).

Here IΦ(y, z) is defined by the distribution where we draw y from pop and z from
PΦ(z|y). We will write Ppop(z) for the marginal on z under this distribution.

Ppop(z) = Ey∼Pop PΦ(z|y)

Based on the result from part (b) rewrite the above definition of rate-distortion
autoencoder to be a minimization over three independent models PΦ(z) and
PΦ(y|z) and PΦ(z|y) (although these models share parameters we will assume
that Φ is sufficiently rich that the models are independently optimizable).

2

Solution:

Φ∗ = argmin
Φ

Ey∼pop,z∼PΦ(z|y) ln
PΦ(z|y)

PΦ(z)
+ λ Dist(y, yΦ(z)).

Problem 3. VQ-VAEs

In a VQ-VAE the rounding operation is parameterized by a tensor C[K, I] giving
K center vectors of the form C[k, I]. We now consider rounding-RDAs defined
by the following objective.

Φ∗,Ψ∗, C∗ = argmin
Φ,Ψ,C

Ey∼Pop, L̂:=roundC(LΨ(y)) − lnPΦ(L̂) + λDist(y, yΦ(L̂))

In the VQ-VAE we are controlling the rate with the parameter K giving the
number of clusters. In the optimization problem the prior term PΦ(L̂) is being
held as uniform over all L̂ and can be ignored. Assuming L2 distortion we are
then left with

Φ∗,Ψ∗, C∗ = argmin
Ψ,Ψ,C

Ey
1

2
||y − yΦ(roundC(LΨ(y)))||2

This has well defined gradients for Φ and C but, because of rounding, not for
Ψ. We are now trying to minimize the expected loss of the following forward
calculation where L[P, I] is a sequence of vectors.

y ∼ Pop

L = LΨ(y)

k[p] = argmin
k

||C[k, I]− L[p, I]||

L̂[p, I] = C[k[p], I]

ŷ = yΦ(L̂)

Loss =
1

2
||y − ŷ||2

The straight through gradient for a rounding operation is given by

L.grad += L̂.grad

(a) 10 points. Give a for loop for computing C[K, I].grad from L̂.grad as defined
by backpropagation on the above computation.

Solution:

for p C[k[p], I].grad += L̂[p, I].grad

3

(b) 15 points. The published formulation of VQ-VAE uses the following gradient
updates.

L.grad += L̂.grad

L.grad += β(L− L̂)

for p C[k[p], I].grad += η̃(C[k[p], I]− L[p, I])

Actually, this has been modified from the published form to add a learning rate
adjustment parameter η̃.

Give an additional loss term so that the published version is equivalent to taking
the gradient of C[K, I].grad from the new loss term only and L[P, I].grad from
both the straight-through gradient and the gradient of the new loss term.

Solution: The additional loss is

1

2
β||L[P, I]− L̂[P, I]||2 =

∑
p

1

2
β||L[p, I]− C[k[p], I]||2

(c) 15 points. Give a complete set of backpropagation updates defined by back-
propagation on both loss terms and using straight-through backpropagation to
L[P, I].grad

Solution:

L.grad += L̂.grad

for p C[k[p], I].grad += L̂[p, I].grad

L.grad += β(L− L̂)

for p C[k(t), I].grad += β(C[k(t), I]− L[p, I])

Here any hyper-parameter for the learning rate for C[K, I] must be handled
elsewhere (in the optimizer).

(d) 10 points. We now have three versions of training — end-to-end with straight
through as in part (a), the published version as in part (b), and the backpropa-
gation on the both loss terms with straight-through as defined in part (c). For
which of these three training algorithms is it true that at a stationary point
C[k, I] is mean of the vectors assigned to class k?

Solution: Of the three, this is only true for the published version.

Problem 4. This problem is on VAE language modeling. Consider a VAE
where the signal s is a word string w1, . . . , wT (as in problem 2). In the VAE

4

we can have a continuous latent variable z. The VAE optimization problem is
then

Φ∗,Θ∗,Ψ∗ = argmin
Φ,Θ,Ψ

Es∼Pop, z∼pΨ(z|s) ln
pΨ(z|s)
pΦ(z)

− lnPΘ(s|z) (1)

Here the first “rate term” is defined on densities and the final “distortion term”
is defined for a discrete sentence s. To explicitly handle the reparameterization
trick will take the encoder density to be a Gaussian. For a Gaussian encoder we
compute a mean vector ẑΨ(s) and a variance σ2

Ψ(s)[i] for each component z[i]
of z. The Gaussian density for the encoder is then.

pΨ(z[i]|s) ∝ exp(−(z[i]− ẑΨ(s)[i])2/(2σ2
Ψ(s)[i])

(a) For a noise value ε ∈ R drawn from N (0, 1), and for given values ẑ ∈ R and
σ2 ∈ R, define a deterministic function z(ẑ, σ2, ε) such that over the draw of the
noise ε we have that z(ẑ, σ2, ε) has the density

p(z) ∝ exp(−(z − ẑ)2/(2σ2)).

Solution: z(ẑ, σ2, ε) = ẑ + σε

(b) Applying your solution to part (a) to the individual components of z equa-
tion (??) can be rewritten as

Φ∗,Θ∗,Ψ∗ = argmin
Φ,Θ,Ψ

Es∼Pop, ε∼N (0,I) ln
pΨ(z|s)
pΦ(z)

− lnPΘ(s|z) (2)

Are there any problems with doing SGD on the optimization defined by (??)
due to the use of continuous z and discrete s? Explain your answer.

Solution: There are no problems here. Since P (s|z) is a computable and z is
continuous we can compute z.grad which can then passed back to the encoder
Ψ through the computation of z(ẑΨ(y),ΣΨ(y), ε). We get a clear advantage of
VAEs over GANs for s discrete.

(c) It can be shown that if we hold the encoder Ψ fixed then the optimal value
of the prior density pΦ(z) is just the marginal on z of the distribution defined
by sampling s ∼ Pop and z ∼ pΨ(z|s). We can write this marginal as pPop,Ψ(z).
Now consider the rate term when pΦ(z) = pPop,Ψ(z).

rate = Es∼Pop, z∼PΨ(z|s) ln
pΨ(z|s)
pPop,Ψ(z)

Write this rate term as a differential mutual information.

Solution:
rate = IPop,Ψ(s, z)

5

This has a channel capacity interpretation. It is the information capacity (infor-
mation rate) of the communication channel that takes input y to output z. This
is typically a nice finite number of bits (or nats) even for continuous densities.
Adding noise to ẑΨ(y) intuitively limits its precision and limits the information
that z carries about s.

Problem 7. This problem is on VAEs when both z and s are discrete. Is the
discreteness of z an issue in this case? Explain your answer.

Solution: Yes, the discreteness of z is an issue. This is true independent of
the nature of s. A differential change in parameters will not change a discrete
z and z.grad = 0. So the standard back-propagation into the encoder fails.
VQ-VAE back-propagates into the encoder using a K-means loss term together
with straight-through gradients. Discreteness of s is not a problem.

Problem 6. Training Vector Quantization

Vector quantization (VQ) can be interpreted as introducing symbols. It uses
an embedding matrix E[K, I] giving an embedding vector E[k, I] for each of
K discrete “symbols”. To make the notation more compact we will write e(k)
for the embedding vector E[k, I] of the symbol k. We define the quantization
operation to map a vector to the symbol whose embedding is nearest to that
vector.

nearestE(x) = argmin
k

||x− e(k)||

We consider a VQ-VAE where the latent variable is a single symbol (from a
possibly large collection of K symbols). In this case the VQ-VAE optimizes the
following objective.

Φ∗ = argmin
Φ

Ey∼Pop ||y − yΦ(e(nearestE(xΨ(y)))))||2 (3)

Ψ∗ = argmin
Ψ

Ey∼Pop

 ||y − yΦ(e(nearestE(xΨ(y)))))||2

+ β||xΨ(y)− e(nearestE(xΨ(y)))||2
(4)

E∗ = argmin
E

Ey∼Pop ||xΨ(y)− e(nearestE(xΨ(y)))||2 (5)

I have written this as a separate objective function for each component of the
model. The objective for a component defines a gradient for that component.
Multiple simultaneous objectives define a multi-player game. We hope to reach
a Nash equilibrium where this is defined as a parameter setting where all the
objectives have zero gradients — each “player” is doing a locally best (or at
least stationary) response. Multiple objectives can be implemented by putting

6

stop gradients (detachments) in each objective to prevent the optimization of
one component from affecting the other components.

The objective (??) defines the gradient for Ψ. In VQ-VAE we compute a gradi-
ent for (??) using the “straight-through” gradient for back-propagation through
vector quantization. The VQ straight-through gradient can be written as

∇xf(e(nearestE(x))) ≈ ∇ef(e)|e=e(nearestE(x))

(a) Give an += equation for incorporating e(nearestE x).grad into x.grad.

Solution:
x.grad += e(nearestE(x)).grad.

(b) Write the SGD update equation for gradient descent on (??) using learning
rate η.

Solution:

e(nearestE(xΨ(y))) += 2η(xΨ(y)− e(nearestE(xΨ(y))))

(c) Assuming η < 1/2, rewrite your solution to (b) in the form of a rolling
average update on e(k) showing that e(k) is a rolling average of the vectors of
the form xΨ(y) satisfying nearestE(xΨ(y)) = k.

Solution: For nearestE(xΨ(y)) = k we have

e(k) = (1− 2η)e(k) + 2ηxΨ(y)

7

