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Improved Denoising Diffusion Probabilistic Models

Nichol and Dhariwal, February 2021

This paper provides a method for training an “uncertainty
level” for each color channel of each pixel.

Later papers in the code base use these uncertainty levels to
weight guidance strength for each color channel of each pixel
in “guided diffusion”.

Guided diffusion with channel-level guiding strength is used in
DALLE-2.
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Optimizing the ELBO

For image VAEs the ELBO is refered to as negative log likeli-
hood (or NLL) and is measured in bits per image channel.
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Optimizing Per-Channel Prior Variances

We now introduce a prior network σΨ(z`, `) ∈ Rd to give the
prior noise level.

z`−1 = fΦ(`, z`) + σΨ(z`, `)� δ, δ ∼ N (0, I)

The prior noise network σΨ(z`, , `) ∈ Rd is trained with the
ELBO objective.

This is unneccessary under the stochastic differential equation
model of DDPM but improves the ELBO when using a discrete
approximation to the differential equation.
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Optimizing Per-Channel Prior Variances

z`−1 = fΦ(`, z`) + σΨ(z`, `)� δ, δ ∼ N (0, I)

Here σ(z`, `)[i] expresses a prior uncertainty in z`−1[i] given
z`[i].

This uncertainty will be larger for pixels in a region with fine
random texture than for pixels in a large region a contant value.

The U-Net can distinguish these different regions of the input.

The more uncertain the model at a given pixel, the more guid-
ance should be used in adjusting it.
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Diffusion Models Beat GANs on Image Synthesis

Dharwali and Nichol, May 2021

This paper introduces guided diffusion as a way of handling
class-conditional diffusion models.

Guided diffusion is used in DALLE-2.
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Class-Conditional Image Generation

We assume training data consisting of (x, y) pairs and we want
to generate from the distribution P (y|x). For example class-
conditional image generation.

Previous approaches, such as StyleGAN, have trained a model
(a GAN) for each class.

Here we will train a single model which takes the class label
as input.

It seems that this can be made to work for VAEs but not for
GANS without an auto-encoder component.

7



Conditional Diffusion Models

An obvious approach is to draw a pair (x, y) and pass the
conditioning information x to the image genertor.

It is a weakness of GANs that we need a separate model for
each x.

It seems to be a weakness of diffusion models that this natural
approach to conditioning fails.

8



Classifier Guidance

We assume a distribution on pairs (x, y).

We also assume a classifier P (x|y). For example x might be
the ImageNET label for image y.

We will generate an image by using P (x|y) to “guide” gener-
ation from the unconditional model ε(z`, `).

Guidance will be based on the score-mathching interpretation
of diffusion models where ε(z`, `) is interpreted as−∇z ln p(z).
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Class-Conditional Generation

z`−1 =
1√

1− σ2`
(z` − σ` ε(z`, `)) + σ̃` � δ

Score-matching interprets ε(z`, `) as −∇z ln p(z).

p(z|x) =
P (z)P (x|z)

P (x)
∝ p(z)P (x|z)

We want a step in direction ∇z ln p(z)P (x|z). They use

pri(z`, `) =
1√

1− σ2`
(z` − σ` ε(z`, `)) + σ̃` � δ + sσ̃ �∇z lnP (x|z)
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Classifier Guidance

pri(z`, `) =
1√

1− σ2`
(z` − σ` ε(z`, `)) + σ̃` � δ + sσ̃ �∇z lnP (x|z)

Here s is called the scale of the guidance.

Empirically it was found that s > 1 is needed to get good
class-specificity of the generated image.

However, increasing s decreases diversity so we have a diver-
sity/quality trade off.
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Other Improvements

Various architectural choices in the U-Net were optimized based
on FID score (not NLL).

These improvements are used in DALLE-2.
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Classifier-Free Diffusion Guidance

Ho and Salimans, December 2021 (NeurIPS workshop)

Classification diffusion guidance uses a classifion model P (x|y).

This paper introduces “classifier-free” diffusion guidance.

Classifier-free diffusion guidance is used in DALLE-2.
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Classifier-Free Diffusion Guidance

5% of the time we set x = ∅ where ∅ is a fixed value unrelated
to the image.

The prior then uses

ε̃(z`, `, x) = sε(z`, `, x)− (s− 1)ε(z`, `, ∅)

where s ≥ 1 controls the relative weight of the two terms.

DALLE-2 incorporates the channel-level uncertainties σ̃ as
weights on classifier-free diffusion guidance provided by CLIP.
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Image Super-Resolution via Iterative Refinement

Saharia, Ho et al., April 2021

They construct a super-resolution diffusion model as condi-
tional model for pairs for pairs (x, y) with x is a downsampling
of y.
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Cascaded Diffusion Models ...

Ho, Saharia et al, May 2021

A series of super-resolution diffusion models each conditioned
on a class label.

This architecture is used in DALLE-2.
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CLIP Does Contrastive Coding

CLIP is used in DALLE-2 and in DALLE-2’s predicessor GLIDE.
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GLIDE: Towards Photorealistic Image Generation ...

Nichol, Dhariwal, Ramesh, et al., December 2021

GLIDE compares two forms of diffusion guidance.

(a) Classifier-free guidance based on comparing conditioned and
unconditioned decoding directions.

(b) Classifer guidance based on CLIP.
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Classifier-free (self-guided) GLIDE

ε̃(z`, `, x) = sε(z`, `, x)− (s− 1)ε(z`, `, ∅)

Classifier-free GLIDE does not use CLIP.

The classifier-free guidance differs from the original version in
that here we are conditioning on text rather than as Imagenet
labels.

The text is transformed to a feature vector by a transformer
before being fed to the prior.
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CLIP-guided GLIDE

Let CI(y) be the CLIP vector for image y and let CT (x) be
the CLIP vector for text x.

z`−1 =
1√

1− σ2`

(
z` − σ` ε(z`, `) + sσ̃ �∇zCT (x)>CI(z)

)
+ σ̃` � δ

Here CLIP is re-trained to handle noised images.
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Upsamling

Both GLIDE versions use diffusion upsampling to go from 64×
64 to 256× 256.

The GLIDE paper concludes that the classifer-free model tak-
ing raw text as input is superior to the CLIP-guided model.
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DALL·E-2

Ramesh, Nichol, Dhariwal, et al., March 2022

CLIP-guided DALLE-2 is similar in quality to self-guided GLIDE
but is more diverse.
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DALL·E-2

This figure is misleaning. The lines in the figure do not corre-
spond to the actual data paths of DALLE-2.
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A Conditional Image Auto-Encoder

Let CI(y) denote the CLIP embedding of image y.

CI(y) is the encoder of an auto-encoder for y given x.

P (CI(y)|x) is the optimal prior for this auto-encoder.

P (y|CI(y), x) is the optimal prior.

In DALLE-2 the prior and the prior both see the text x.
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Putting it all Together

We are given text x.

Draw Ĉ from the prior P (CI(y)|x)

Do diffusion decoding with two upsampling models:

compute z̃`−1 using ε̂ = sε(z`, `, x)−(s−1)ε(z`, `, ∅)

z`−1 = ẑ`−1 + s′σ̃ �∇z Ĉ>CI(z)

25



The Prior

They experiment with two priors P (CI(y)|x).

An autoregressive model and a conditional diffusion model.

They say both priors use self-guidance.
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The Autoregressive Prior

First do PCA on the distibution of vectors CI(y) to reduce
their dimensionality from 1024 to 319.

Sort the eigenvectors in decreasing order of eigenvalue.

Quantize each of 319 values into 1024 discrete buckets.

We train a transformer to take the text sequence x followed
by the text embedding CT (x) and to and to predict a string
of 319 symbols with a vocabulary of size 1024 which can be
converted back into the vector Ĉ.
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The Diffusion Prior

Let z` be the noising ofCI(y) to level `. For the prior they train
a transformer to take the text string x, the text embedding
CT (x), the noised image embedding z`, and the level `. A
final “classifier token” is added to the end of this string and
vector computed for that token by the transformer is used as
a prediction of CI(y). This predictor f (x, z`, `) is trained on
the objective

f∗ = argmin
f

Ex,y,z`,` ||f (x, z`, `)− CI(y)||2

28



Sampling Ĉ from the Diffusion Prior

The paper does not describe the decoding process that com-
putes z`−1 from z` but the following seems reasonable.

z`−1 = f (x, z`, `) + σ̃δ δ ∼ N (0, I)

They can draw samples of Ĉ using different values δ

z0 = f (x, z1, 1) + σ̃δ δ ∼ N (0, I)

They draw two samples Ĉ and Ĉ ′ and use the one with larger
inner product with CT (x).
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Markovian VAEs

Diffusion models are a special case of Markovian VAEs.

A Markovian VAE has latent variable z = (z0, z1, . . . , zL).

It is not clear whether diffusion models are the best way to do
this.

It could be that the important idea is simply having large L
with I(z0, z`) going from H(z0) to 0 as ` goes from 0 to L.
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