TTIC 31230, Fundamentals of Deep Learning
David McAllester, Autumn 2024

The Mathematics of Diffusion Models

McAllester, arXiv 2301.11108

Diffusion Models

Deep unsupervised learning using nonequilibrium thermodynamics
Sohl-Dickstein et al., 2015.

Denoising Diffusion Probabilistic Models (DDPM)
Ho, Jain and Abbeel, June 2020

Diffusion Models

Consider a discrete time process z(0), z(At), z(2At), z(3At), . ..
z(0)

y, y~ Pop(y)

2(t+At) = 2(t) + VAL, €~ N(0,1)

Diffusion Models

Consider a discrete time process z(0), 2(At), z(2At), z(3At), . ..
2(0) =y, y~ Pop(y)

2(t+At) = 2(t) + eVAt, e~ N(0,])

A sum of two Gaussians is a Gaussian whose variance is the
sum of the two variances.

2(t+nAt) = z(t) + VnAte, €~ N(0,I)
Here vVnAt is the standard deviation of the added noise.

4

Diffusion Models

A :ﬁl): ;
i? e £

2(t +nAt) = 2(t) + VnAte, e~ N(0,I)

SDE Notation

In these slides € will be a random variable drawn from N (0, I).

This correspods to “dB” in standard notation for SDEs.

24+ At) = 2(t) + plz,) At + o(z, eV At

dz = p(z,t)dt +o(z,t)dB

The first expression is longer but seems clearer to me.

The SDE denotes the limit as At in the first equation goes to
Z€T0.

The Diffusion SDE

For the diffusion process (Brownian motion) we have

2(0) =y, y ~ Pop(y)
2(t+ At) = 2(t) + eV At

dz = dB

For diffusion we get that (1) holds for all ¢ and At.

7

Probability Notation

In these slides unsubscripted probability notation, such as

P(z(t + At)|2(t)),

or a conditional expectation such as

Elf(y)|=(t)] = EyNP(y|zt)[f<y)]a

refer the joint distribution on y and z(¢) defined by diffusion.

8

IA

The Hierarchical ELBO

P(y) Py P(y)Pone(z1, ...,
B [_ n LW (Zly)] B [_ 1y £ @) Penc(21 ZN|y)]
Penc(z|y) Penc(Zla---aley)
E [_ In P(y)Penc(Zl‘y)Penc(Z2|Zl) "'Penc(ZN‘ZN1>:|
e Penc(zl‘y)Penc(f@lZl) e Penc(ZN‘ZN—l)
B -_ 111 Penc(y‘zl)Penc(zl‘Z?) e Pen(:<ZN—1|ZN)Pen(:(ZN)]
e L Penc(zl‘z% y) T Penc(ZN71|ZN7 y)Penc(ZN|y)

E __ In Pg()n(y‘zl)Pgon(Zl|Z2) U Pgon(ZN—l|ZN)Pg0n(ZN)]

Penc(zl|z27 y) T Penc(ZN—l‘ZNa y)Penc(Zle)

(Eenc [_ In Pgen(y|zl)]

0+, Boe KL(Pae(2i-112iy), Paen(zi-1]2))

\ _I_Eenc KL(Penc(ZN‘y)apgen(ZN))

Reverse-Time Probabilities

In the limit of small At it is possible to derive the following.

Plelt = A0)|=(t),) = N (=(t) + 2led - pp)

P(a(t — A|2(t) = N (2(t) + AUELEI=20) - ag)

10

The Reverse-Diffusion SDE

P(a(t — At)[2(8) = N (z(t) + 2UELE2OI=20) ng)

This equation defines a reverse-diffusion SDE which we can
write as

2(t — At) = z(t) + (E[y|t, 28] - Z(t>) At 4+ eV At

t

11

Understanding Reverse Diffusion

Elylt, 2(t)] — 2(t)
t

2(t— At) = 2() + At + eV At

v

A

Elylt, 2] is averaging over many possible source images y.

12

Estimating Fly|t, z(t)]

2(t — At) = 2(t) + (E[y’t’ Z(?] — Z<t>) At 4 eV At

We can train a denoising network (¢, z) to estimate Ely|t, z(t)]
using

§*(t,2) = argmin B (§(t, 2(1)) — y)°
Y

Assuming universality y*(t, z) = Elylt, z|.

13

Estimating Fly|t, z(t)]

If the population values are scaled so as to have scale 1, then

the scale of z(t) is /1 + t.

THES argmin £y) (y(t, 2/ V1+1) — y)°
Y

Elylt, 2(t)] = §*(t, 2/V1+1))

14

y(t, z) is a U-Net

[n practice g(t, z) is computed with a U-Net.

€ 1 64 64 # of feature maps 192 64 64 1
g
@
E
20 1; 2D output
input -é > > @ wp segmentation
patch 2 map
-]
;
-]
¥ 128128 384 128 4
=
s & o >
T
l feature maps
< ¥ 256 256 768 256 4 & conv 3x3 RelU +
= dropout
b g = conv 3x3 RelU
~ & si2 s 153 512 4 concatenation
X Iokl o> > ¥ max-pooling 2x2
-— —
e ¥ 1024 I ¢ up-sampling 2x2
< =N+ s final conv 1x1

The U-Nets themselves seem closely related to hierarchical

VAEs.

15

Computing (or Bounding) Entropy

[Ey[KL(P(2nly), P(zn))

Hly) = § +Xils EyulKL(P(zim]2,y), Plzici]2))]

\ + Ey,z1[ln —P<y‘21>]

For two Gaussian distributions with the same isotropic covariance we have

2 2 _Hul—MQHQ
KL(N<:U170-[>7N<N27O-]>)_ 252

16

Computing (or Bounding) Entropy

[Ey[KL(P(zxly), Pzn))

H(y) = $ +30, By [KL(P(2i-1|2i,y), P(zi-1]2:))]

\ =+ Ey,z1[ln —P<y‘21)]

t

P(a(t — At)|2(8),y) = N ((2(r) + 200 a¢r)

Pa(t — A)[2(8) = N (() + BB -y)

t

17

Computing (or Bounding) Entropy

Pa(t = A[a(t),y) = N (2(t) + 20720 A)

t

Pa(t = A[a(1) = N (2(f) + 2Ll 010)

t

E%wQ::CW_MWﬂ@WNS

22 At

CW—MWwMMjAt

2t?

18

Computing (or Bounding) Entropy

(Ey[KL(P(znly), P(2n))]

+ 300V By o[KL(P(2i1]21,y), P(zi_1]2))]

/"

| T Ey,z1 [ln _P(y"zl)]

v (Ey,zw ly = Elylt, 2(1)]

Z N2

1=2
t = 1At

19

Passing to the Integral

ly—Elylt 2]l

(
o0
Sy dt By TE

-+ E%Z(t) —In P(y|z(tg))]

ly—Elylt. 2]l

f
o0
Sy dt By TE

|+ H(ylz(to))

20

|
|

Mutual Information

2t2

([oo —FElyl|t,z(t 2

+ H(y|z(to))

\

ly — Elylt, ()
| |

1)~ Hl=) = [dt By "

)

ly — Elylt, ()
| |

2t?

I(y, =(t0)) = / it B,

1o

This is the information minimum mean squared error relation (I-MMSE)
relation [Guo et al. 2005].

21

Bounding Entropy

postt) = [a By =220

2t?

>~ — Efylt, 2(8)]||?
S [y ylt, = >]|]
to

22

The Fokker-Planck Anaylysis (The Score Function)

For € ~ N (0, I) a general SDE can be written as
2(t+ At) = z(t) + u(z(t), t) At + o(z(t),t)evV At

dz = p(z(t),t)dt + o(z(t),t)dB

The diffusion process is the special case of Brownian motion

2(t+ At) = z(t) + eV At
dz = dB

23

The Fokker-Planck Equation

Let Pi(z) be the probability that z(t) = z.

OP(z) 1(z(t), 1) P(2)

oV
—102(2(t), 1)V . Py(2)

For the special case of diffusion we have

algid o <_%VZP7:(Z>>

24

The Score Function

(W(t), 1) Py(2))
— _V.
—12(2(t), 1)V . Py(2)

The Score Function

81?;52) __v. K_%vz In Pt(z)> Pt(z)]

In Py(z) is the score function.

The time evolution of Pi(z) can be written as the result of
deterministic flow given by

dz 1
T _ivz In pt(Z)

26

Deterministic Reverse Diffusion

Following the deterministic flow backward in time samples
from the population!

1
z(t — At) = z(t) + §VZ In pe(2) At

No reverse diffusion noise!

27

Solving for the Score Function

Fi(z) = Ey P(z|y)

1w
e 2t

= Pz

V.F(z) = E, P(zly) (y —2)/t

Pt(Z)P(y|t7 Z)

- Ey P(y) [(y T Z)/t]
= P() [dy P2y -)/
_ Pt(Z>E[y|t,tz] —z

E[g|t/ Z] — <

V.InP(z) =

t

This is Tweedie’s formula, Robbins 1956.

28

Stochastic vs. Deterministic Reverse Diffusion

z(t — At) = 2(t) + (E[W’Z(m — Z(t)> At + eV At

t

z(t — At) = z(t) + ; .

| (Bt att] =0 o,

29

Interpolating Stochastic and Deterministic

One can show that for A € |0, 1] the following also samples
from the population.

2(t — At) = z(t) + LA (E[y|t, 2(0)] - Z(t)> At + \eV At

2 t

30

END

