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Diffusion Models

Consider a discrete time process z(0), z(At), z(2At), z(3At), . ..
z(0)

y, y~ Pop(y)

2(t+At) = 2(t) + VAL, €~ N(0,1)



Diffusion Models

Consider a discrete time process z(0), 2(At), z(2At), z(3At), . ..
2(0) =y, y~ Pop(y)

2(t+At) = 2(t) + eVAt, e~ N(0,])

A sum of two Gaussians is a Gaussian whose variance is the
sum of the two variances.

2(t+nAt) = z(t) + VnAte, €~ N(0,I)
Here vVnAt is the standard deviation of the added noise.
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Diffusion Models
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2(t +nAt) = 2(t) + VnAte, e~ N(0,I)




SDE Notation

In these slides € will be a random variable drawn from N (0, I).

This correspods to “dB” in standard notation for SDEs.

24+ At) = 2(t) + plz, ) At + o(z, eV At

dz = p(z,t)dt +o(z,t)dB

The first expression is longer but seems clearer to me.

The SDE denotes the limit as At in the first equation goes to
Z€T0.



The Diffusion SDE

For the diffusion process (Brownian motion) we have

2(0) =y, y ~ Pop(y)
2(t+ At) = 2(t) + eV At

dz = dB

For diffusion we get that (1) holds for all ¢ and At.
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Probability Notation

In these slides unsubscripted probability notation, such as

P(z(t + At)|2(t)),

or a conditional expectation such as

Elf(y)|=(t)] = EyNP(y|zt)[f<y)]a

refer the joint distribution on y and z(¢) defined by diffusion.

8



IA

The Hierarchical ELBO
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Reverse-Time Probabilities

In the limit of small At it is possible to derive the following.

Plelt = A0)|=(t), ) = N ( =(t) + 2led - pp)

P(a(t — A|2(t) = N ( 2(t) + AUELEI=20) - ag )
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The Reverse-Diffusion SDE

P(a(t — At)[2(8) = N ( z(t) + 2UELE2OI=20) ng )

This equation defines a reverse-diffusion SDE which we can
write as

2(t — At) = z(t) + (E[y|t, 28] - Z(t>) At 4+ eV At

t
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Understanding Reverse Diffusion

Elylt, 2(t)] — 2(t)
t

2(t— At) = 2() + At + eV At

v

A

Elylt, 2] is averaging over many possible source images y.
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Estimating Fly|t, z(t)]

2(t — At) = 2(t) + (E[y’t’ Z(?] — Z<t>) At 4 eV At

We can train a denoising network (¢, z) to estimate Ely|t, z(t)]
using

§*(t,2) = argmin B (§(t, 2(1)) — y)°
Y

Assuming universality y*(t, z) = Elylt, z|.
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Estimating Fly|t, z(t)]

If the population values are scaled so as to have scale 1, then

the scale of z(t) is /1 + t.

THES argmin £y ) (y(t, 2/ V1+1) — y)°
Y

Elylt, 2(t)] = §*(t, 2/V1+1))
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y(t, z) is a U-Net

[n practice g(t, z) is computed with a U-Net.

€ 1 64 64 # of feature maps 192 64 64 1
g
@
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input -é > > @ wp  segmentation
patch 2 map
-]
;
-]
¥ 128128 384 128 4
=
s & o >
T
l feature maps
< ¥ 256 256 768 256 4 & conv 3x3 RelU +
= dropout
b g = conv 3x3 RelU
~ & si2 s 153 512 4 concatenation
X Iokl o> > ¥ max-pooling 2x2
-— —
e ¥ 1024 I ¢ up-sampling 2x2
< =N+ s final conv 1x1

The U-Nets themselves seem closely related to hierarchical

VAEs.
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Computing (or Bounding) Entropy

[ Ey[KL(P(2nly), P(zn))

Hly) = § +Xils EyulKL(P(zim]2,y), Plzici]2))]

\ + Ey,z1[ln —P<y‘21>]

For two Gaussian distributions with the same isotropic covariance we have

2 2 _Hul—MQHQ
KL(N<:U170-[>7N<N27O-]>)_ 252
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Computing (or Bounding) Entropy

[ Ey[KL(P(zxly), Pzn))

H(y) = $ +30, By [KL(P(2i-1|2i,y), P(zi-1]2:))]

\ =+ Ey,z1[ln —P<y‘21)]

t

P(a(t — At)|2(8),y) = N ((2(r) + 200 a¢r )

Pa(t — A)[2(8) = N ( () + BB -y )

t
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Computing (or Bounding) Entropy

Pa(t = A[a(t),y) = N ( 2(t) + 20720 A )

t

Pa(t = A[a(1) = N ( 2(f) + 2Ll 010 )

t

E%wQ::CW_MWﬂ@WNS

22 At

CW—MWwMMjAt

2t?
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Computing (or Bounding) Entropy

( Ey[KL(P(znly), P(2n))]

+ 300V By o[ KL(P(2i1]21,y), P(zi_1]2))]

/"

| T Ey,z1 [ln _P(y"zl)]

v (Ey,zw ly = Elylt, 2(1)]

Z N2

1=2
t = 1At
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Passing to the Integral

ly—Elylt 2]l

(
o0
Sy dt By TE

-+ E%Z(t) —In P(y|z(tg))]

ly—Elylt. 2]l

f
o0
Sy dt By TE

|+ H(ylz(to))
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Mutual Information

2t2

([ oo —FElyl|t,z(t 2

+ H(y|z(to))

\

ly — Elylt, ()
| |

1)~ Hl=) = [ dt By "

)

ly — Elylt, ()
| |

2t?

I(y, =(t0)) = / it B,

1o

This is the information minimum mean squared error relation (I-MMSE)
relation [Guo et al. 2005].
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Bounding Entropy

postt) = [ a By =220

2t?

>~ — Efylt, 2(8)]||?
S [y ylt, = >]|]
to
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The Fokker-Planck Anaylysis (The Score Function)

For € ~ N (0, I) a general SDE can be written as
2(t+ At) = z(t) + u(z(t), t) At + o(z(t),t)evV At

dz = p(z(t),t)dt + o(z(t),t)dB

The diffusion process is the special case of Brownian motion

2(t+ At) = z(t) + eV At
dz = dB
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The Fokker-Planck Equation

Let Pi(z) be the probability that z(t) = z.

OP(z) 1(z(t), 1) P(2)

oV
—102(2(t), 1)V . Py(2)

For the special case of diffusion we have

algid o <_%VZP7:(Z>>
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The Score Function

(W(t), 1) Py(2) )
— _V.
—12(2(t), 1)V . Py(2)




The Score Function

81?;52) __v. K_%vz In Pt(z)> Pt(z)]

In Py(z) is the score function.

The time evolution of Pi(z) can be written as the result of
deterministic flow given by

dz 1
T _ivz In pt(Z)
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Deterministic Reverse Diffusion

Following the deterministic flow backward in time samples
from the population!

1
z(t — At) = z(t) + §VZ In pe(2) At

No reverse diffusion noise!
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Solving for the Score Function

Fi(z) = Ey P(z|y)

1w
e 2t

= Pz

V.F(z) = E, P(zly) (y —2)/t

Pt(Z)P(y|t7 Z)

- Ey P(y) [(y T Z)/t]
= P() [ dy P2y - )/
_ Pt(Z>E[y|t,tz] —z

E[g|t/ Z] — <

V.InP(z) =

t

This is Tweedie’s formula, Robbins 1956.
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Stochastic vs. Deterministic Reverse Diffusion

z(t — At) = 2(t) + (E[W’Z(m — Z(t)> At + eV At

t

z(t — At) = z(t) + ; .

| (Bt att] =0 o,
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Interpolating Stochastic and Deterministic

One can show that for A € |0, 1] the following also samples
from the population.

2(t — At) = z(t) + LA (E[y|t, 2(0)] - Z(t)> At + \eV At

2 t
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