TTIC 31230 Fundamentals of Deep Learning, Fall 2022 Quiz 3

Problem 1. Consider a diffusion encoding process defined by

$$
z_0 = y
$$

\n
$$
z_{\ell} = \alpha z_{\ell-1} + \sqrt{1 - \alpha^2} \epsilon \epsilon \sim \mathcal{N}(0, I)
$$

Take α constant for all ℓ with $0 < \alpha < 1$ with $1 \leq \ell \leq L$. We assume that α^L is sufficiently small that z_L is independent of y.

Now consider training a deterministic decoder (aka denoiser) $\hat{y}_{\Phi}(z_{\ell}, \ell)$ for recovering the image y from z_{ℓ} using the following loss.

$$
\Phi^* = \underset{\Phi}{\text{argmin}} \ E_{y,\ell,z_\ell} \ ||y - z_{\Phi}(z_\ell,\ell)||^2 \tag{1}
$$

This is done in training the decoder in some successful diffusion models.

Although the model $z_{\Phi}(z_{\ell}, \ell)$ is trained to predict y it is used to generate $z_{\ell-1}$ from z_ℓ in generation. The decoding process is sometimes made to be deterministic with

$$
z_{\ell-1} = z_{\Phi}(z_{\ell}, \ell) \tag{2}
$$

(a) Assuming universality for Φ , and assuming that z_L is distributed as $\mathcal{N}(0, I)$ independent of y, write $z_{\Phi^*}(z_L, L)$ as an expression not involving optimization (not involving argmin).

(b) Does your answer to (a) have implications for the diversity of generated images in a model that uses both (1) and (2). Explain your answer.

(c) Why might an image generator based on (1) and (2) be diverse in practice?

Problem 2. In a progressive VAE we are interested in modeling the distribution $p_{\Phi}(z_{\ell-1}|z_{\ell}, \ell)$. Current diffusion models use

$$
z_{\ell-1} = z_{\Phi}(z_{\ell}, \ell) + \sigma \delta \quad \delta \sim \mathcal{N}(0, I)
$$

However, if want to reduce the number of layers we have more noise between layers and the true conditional distribution $p(z_{\ell-1}|z_{\ell}, \ell)$ will not be Gaussian.

This problem asks you to formulate a conditional Gaussian VAE model for the conditional distribution $p_{\Phi}(z_{\ell-1}|z_{\ell}, \ell)$. Here z_{ℓ} and ℓ are given and you are to introduce a latent variable with an encoder, decoder and prior, for modeling $p_{\Phi}(z_{\ell-1}|z_{\ell}, \ell)$. In a Gaussian VAE we have that, without loss of generality, the prior can be taken to be $\mathcal{N}(0, I)$. In a Gaussian VAE for images the latent variable typically has smaller dimension than the images.

Letting ϵ denote the latent variable of the Gaussian VAE, and taking the prior to be $\mathcal{N}(0, 1)$, sampling from the prior, followed by sampling from the decoder, can be written as

$$
z_{\ell-1} = z_{\Phi}(\epsilon, z_{\ell}, \ell) + \sigma_{\Phi}(\epsilon, z_{\ell}, \ell) \odot \delta \quad \epsilon \sim \mathcal{N}(0, I), \quad \delta \sim \mathcal{N}(0, I)
$$

Here \odot denotes Hadamard product, or diminsionwise product, with $(x \odot y)[i] =$ $x[i]y[i].$

Write a similar equation for the Gaussian VAE encoder generating the latent variable ϵ from z_{ℓ} and ℓ and give the objective function for jointly training the encoder and the decoder.