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Langevin Dynamics

Consider a model density defined by a continuous softmax on
a model score.

pscore(y) = softmax
y

score(y)

=
1

Z
escore(y)

Z =

∫
escore(y) dy

Here score(y) is a parameterized model computing a score and
defining a probability density on Rd.
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Langevin Dynamics

If y is discrete, but from an exponentially large space (such
as sentences or a semantic image segmentation) we can use
MCMC sampling (the Metropolis algorithm or Gibbs sam-
pling).

In the continuous case we can use Langevin dynamics.
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Langevin Dynamics

Noisy gradient ascent on score.

y(t + ∆t) = y(t) + ηg∆t + σε
√

∆t

g = ∇y score(y)

ε ∼ N (0, I)

This give a well-defined distribution on functions of time in the
limit as ∆t→ 0.

dy = ηgdt + σε
√
dt ε ∼ N (0, I)
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Langevin Dynamics

dy = ηgdt + σε
√
dt ε ∼ N (0, I)

This has stationary (equilibrium) density.

The derivation is mathematically identical to the derivation of
the stationary distribution of SGD at a learning rate η and
noise covariance Σ.

However, here we have isotropic noise rather than arbitrary
gradient noise.

Isotropic noise always yields a Gibbs distribution.

Imposing isotropic noise is called Langevin dynamics.
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The Stationary Density

To derive the stationary density we consider a gradient flow
and a diffusion flow as a function of density p(y).

The gradient flow is ηp(y)∇yscore(y) and the diffusion flow is
1
2ησ

2∇yp(y)

Setting them to be opposite and solving the resulting differen-
tial equation gives

p(y) =
1

Z
e

2score(y)

ησ2

6



The Stationary Density

p(y) =
1

Z
e

2score(y)

ησ2

Setting η = 1 and σ2 = 2 gives

p(y) =
1

Z
escore(y) = softmax

y
score(y)

Running Langevin dynamics long enough will yield a sample
from the softmax distribution.

7



Score Matching

In score matching we train g(y) rather than score(y) so as to
make g(y) ≈ ∇y score(y)

The training objective for the decoder of a diffusion model can
be viewed as training an update direction g to approximate
∇y ln p(y).

The score matching interpretation identifies the
diffusion model decoding vector ε(z) with −∇z ln p(z)

Warning: The term “score” in score matching technically
refers to the gradient vector ∇y score(y) rather than to the
scalar “score” used in the softmax.
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Simulated Annealing

In simulated annealing one tries to avoid local optima by first
running at a high temperature and then then gradually reduc-
ing the temperature.

In the diffusion model σ` increases with increasing ` which is
claimed to be an analogy with simulated annealing.

However, simulated annealing corresponds to adding noise in
sampling rather than adding noise to a population sample.
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Score Matching vs. VAE

The VAE interpretation of diffusion models does not rely on
Langevin dynamics, score matching or simulated annealing.

However, the score matching interpretation, which identifies
ε(z`, `) with −∇z p(z), plays a role in “classifier conditioned
guidance” used in DALLE-2.
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The DDPM Stochastic Differential Equation (SDE)

Consider a DDPM (denoising diffision probabilistic model) for
modeling P (y) with y ∈ Rd where the noise model is defined
by

z0 = y

z` = αz`−1 +
√

1− α2 ε ε ∼ N (0, I)

For technical simplicity we take α to be constant for all ` and
allow ` ≥ 1 to be arbitrarily large.

11



The DDPM SDE

For sampling z` given z0 the unit variance constraint gives

z` = α`z0 +
√

1− α2` ε ε ∼ N (0, I)

For sampling z(`+k) given z` we have

z(`+k) = αkz` +
√

1− α2k ε ε ∼ N (0, I)
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The DDPM SDE

Setting α = e
−1
N we have

z` = e
−`
N z0 +

√
1− e

−2`
N ε ε ∼ N (0, I)

z(`+k)|` = e
−k
N z` +

√
1− e

−2k
N ε ε ∼ N (0, I)
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The DDPM SDE

Taking t = `
N . We have ` = Nt and the previous slide can be

written as

z(t) = e−tz(0) +
√

1− e−2t ε ε ∼ N (0, I)

z(t + ∆t) = e−∆tz(t) +
√

1− e−2∆t ε ε ∼ N (0, I)
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The DDPM SDE

For small ε we have e−ε ≈ 1− ε and for small ∆t the previous
slide can be written as

z((t + ∆t)|t) ≈ z(t)− z(t)∆t +
√

2∆t ε

∆z ≈ −z∆t +
√

∆t δ δ ∼ N (0, 2I)

This can be interpreted as the stochastic differential equation
for the forward process (the encoder) for diffusion models.
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