TTIC 31230 Fundamentals of Deep Learning

Problems for GANSs.

Problem 1. Conditional GANs In a conditional GAN we model a con-

ditional distribution Pop(y|xz) defined by a population distribution on pairs
(x,y). For conditional GANs we consider the probability distribution over
triples (z,y, ) defined by

Pp(i=1) = 1/2
Pa(ylr,i=1) = pop(y|z)
Pe(ylz,i=—-1) = pa(ylz)

(a) Write the conditional GAN adversarial objective function for this problem
in terms of P(z,y,1), Ps(y|z) and Py (ily, x).

Solution:
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Problem 2. Contrastive GANSs.

A GAN can be built with a “contrastive” discriminator. Rather than estimate
the probability that y is from the population, the discriminator must select
which of y1,...,yn is from the population.

More formally, for N > 2 let péN) be the distribution on tuples (i,y1,...,yn)
defined by drawing one “positive” from Pop and N — 1 IID negatives from
Pg; then inserting the positive at a random position among the negatives; and
returning (4,y1,...,yn) where 4 is the index of the positive.

®* = argmaxmin F
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Restate the above definition of I:’é)N) and the GAN adversarial objective for the
case of conditional constrastive GANs.

Solution:
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Problem 3. Reshaping Noise in GANs. A GAN generator is typically
given a random noise vector z ~ N(0,1). Give equations defining a method
for computing 2z’ from z such that the distribution on 2’ is a mixture of two
Gaussians each with a different mean and diagonal covariance matrix. Hint:
use a step-function threshold on the first component of z to compute a binary
value and use the other components of z to define the Gaussian variables.

Solution:

y = 1[z[0] > 0]
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Problem 4. This problem is on GAN language modeling. A GAN takes noise as
input and transforms it to an output. We consider the case where the output is a
string of symbols wy, ..., wp where for simplicity we always generate a string of
exactly length 7" and where the words are integers with w; € {0,...,I—1} where
I is the size of the vocabulary. The GAN parameters are just the parameters
of a bigram model, i.e., the parameters are probability tables

P[Z] = P(wlzz’)

Qli,j] = Plwir =j|we =1)
We take the noise input to the GAN to be a sequence of random real numbers
€1,...,er where each ¢ is drawn uniformly from the interval [0, 1].

(a) Write a function @w(P[I],e;) which deterministically returns the first word
given the noise value €; such that the probability over the draw of e; that
w(P[I],e1) =1 is P[i].

Solution: We can take w(P[I], €1) to be the unique i such that €; € [(Z]Q P[j}) , (ngi P[]])]

(b) Write a function w(Q[I, I], wy, ;) which deterministically returns the word
w41 given wy such that the probability over the draw of e; that W(Q[I, I], ws, ;) =

Jis Q[wy, j].
Solution: We can take w(Q[I,I],w;,€;) to be the unique w; such that ¢, €
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(c) There is a problem with this GAN. For string generated by the GAN we need
to back-propagate the discriminator loss into the GAN generator parameters.



Explain why this is problematic. Is this always problematic when the generator
output is discrete?

Solution: Yes, there is a problem whever s is discrete. A discrete output will
not change under differential updates to the GAN parameters. Hence the gra-
dient of the discriminator loss with respect to the generator parameters is zero.
This will happen for any GAN generatng a discrete output. While there are
approaches one can try for discrete GANs, GANs are most effective for modeling
continuous objects like sounds and images. It does not help to have the GAN
sample from a transformer model. To get a gradient on the generator param-
eters we need a gradient of the discriminator loss with respect to a continuous
signal s being generated by the generator.



