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Generative Adversarial Networks (GANs)



Continuous Cross Entropy is Problematic

(When the Entropy is Large)

Suppose we want to train a model of the probability distribu-
tion of natural images using cross-entropy loss.

O* = argmin Ey~pop — Inpe(y)
O

Images are continuous stuctured objects — a continuous value
at every pixel.
It is difficult to build probability models for sounds or images

(or other high-entropy continuous densities) that both accu-
rately model the distribution and also allow us to calculate

Pao(y).



Generative Adversarial Networks (GANs)

GANSs represent pg(y) implicitly by constructing an image gen-
erator and abandon the ability to compute pg(y).

The cross-entropy loss is replaced by an adversarial discrimi-
nator which tries to distinguish between generated images and
real images.



Representing a Distribution with a (Generator
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Project and reshape

The random input z defines a probability density on images
yp(z). We will write this as pg(y) for the image .



Representing a Distribution with a (Generator
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Project and reshape

G(2)

We want pg(y) to model a natural image distribution such as
the distribution over human faces.



Representing a Distribution with a (Generator

2 yo(z)

G(2)

We can sample from pg(y) by sampling z. But we cannot
compute pg(y) for y sampled from the population.



Increasing Spatial Dimension

Reducing spatial dimention with strided convolution:

For x,y, 7, Ax, Ay, i

Loqlz,y, 7] += WAz, Ay, 1, j|Lyg|s * x + Ax, s x y + Ay, 4]
Increasing spatial dimension with PyTorch ConvTranspose2d:

For x? y) j? AZE? Ay7 Z

Lyjilsxx + Az, s« y + Ay, | += WAz, Ay, i, j]Lg[x, v, j]

Irrelevant Observation: ConvIranspose follows the “swap
rule” for computing gradients for a spacially-reducing Conv
layer.



Generative Adversarial Networks (GANs)

Let y range over images. We have a generator pg. For ¢ &
{—1,1} we define a probability distribution over pairs (7, y)
by
Poli =1) = 1/2
Po(yli =1) = pop(y)
Po(yli = —1) = po(y)

We also have a discriminator Py;..(i|y) that tries to determine
the source 7 given the image .

The generator tries to fool the discriminator.

gen” = arégllax min E (i, ) ~Fgen In Pyie.(i|y)
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(G ANSs

The generator tries to fool the discriminator.

gen’ = arégrllax min E (i, ) ~gen In Py (2]y)

Assuming universality (next slide) of both the genera-
tor pgen and the discriminator Fyig. we have pgep+ = pop.

Note that this involves only discrete cross-entropy.



The Universality Assumption

DNNs are universally expressive (can model any function) and
trainable (the desired function can be found by SGD).

Universality assumption is clearly false but is usetul.

The success of GANs (to the extent that they have been suc-
cessful) is a tribute to the utility of the universality assumption.
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Jensen-Shannon Divergence

gen® = argmax min F

n B,y — In Paise(2]y)]
gen isc y

— argmaxE<- >[— In P(i]y)]

gen LY
1 1
= argmax §Ey,\,p0p —In P(1]y)] + §Ey~pgen —P(—1|y)]
gen
— argmin KL (pop7 pop + pgen> + KL (pgen) pPOp —gpgen)

gen

gen” = argmin JSD(pop, pgen )

gen
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GAN Mode Collapse

A major concern is “mode collapse” where the learned distribu-
tion omits a significant fraction of the population distribution.

There is no quantitative performance measure that provides a
meaningful guarantee against mode collapse.

In practice GANS are evaluated on FID score.
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The Frénchet Inception Score (FID)

Consider two distributions P and () on R4 (perhaps two dis-
tributions on images).

Generative image models are (still) evaluated using a certain
measure of the “distance” between the population distribution
and the generation distribution.

For GANs we cannot compute the probability of a generated
image so we cannot use cross entropy or KL-divergence.

13



The Frénchet Inception Score (FID)
The Frénchet distance F'(P,()) can be measured (approxi-
mately) by sampling.
Let p range over distributions on pairs (x,y) such that

1
F(P.Q) =i By )y lle —vll’)’

This 1s a form of earth movers distance. It i1s also known as
the 2-Wasserstein distance.
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The Frénchet Inception Score (FID)

But rather than measure the Lo distance between images we
measure the Lo distance between the “inception feature vec-

tors” I(x) and I(y).

For an image x the feature vector I(z) is computed from a
certain layer in the inception image classification network.
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Generative Adversarial Nets

Goodfellow et al., June 2014
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The rightmost column (yellow boarders) gives the nearest neigh-
bor in the training data to the adjacent column.
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Unsupervised Representation Learning ... (DC GANS)
Radford et al., Nov. 2015
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Unsupervised Representation Learning ... (DC GANS)
Radford et al., Nov. 2015

man man woman
with glasses without glasses without glasses

woman with glasses
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Interpolated Faces

|Ayan Chakrabarti, January 2017]
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Conditional Density Estimation with Lo loss

Consider training a model Py to predict the next frame in a
video from the two previous frames.

Py (yi42|yt, Yt+1)

The pair y; and y¢1 give both an image and the motion in
the image so predicting y;. 9 is possible.
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Conditional Density Estimation with Lo loss

Here we can train by Lo loss

O* = argglin 90 (Yt yr—1) — yrio||

Lo loss is aspecial case of cross-entropy loss where Py (yto|yt, yt41)
is taken to be a Gaussian centered as 4y (yt, Yei1)-
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The General Conditional Case

We now consider a general conditional case we have a popu-
lation distribution over pairs (x,y) where x provides enough
information to train the model yg(y|x) by Lo or Ly loss.

For the Ly case we have the following.

O* = argqf)niﬂ 9o (Yt yi—1) — Y21
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Image-to-Image Translation (Pix2Pix)
Isola et al., Nov. 2016

We assume a corpus of “image translation pairs” such as im-
ages paired with semantic segmentations.

Labels 1o Facade BW to Caolor

Labals to Street Scene

outpul

ocutput
_ Edges to Photo
it

output

output
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U-Nets

Pix2Pix uses a U-Net.

U-Net: Convolutional Networks for Biomedical Image Segmen-
tation, Ronneberger, Fischer and Brox, May 2015.

U-Nets are fundamental to current diffusion models.
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Adversarial Discrimination as an Additional Loss

gen” = argmin E, ) on |4 = Ygen(2)]|1 + A Lpiser(gen)

gen

Lpiger(gen) = Iéligéc E:E,y,iwﬁgen In Pyige(i]y, x)
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Discrimination as an Additional Loss

Ll . gen* — argmingen E(m,y)NpOp ||y o ygen<x>H1

cGAN : gen® = argmin,,, Lpisr(gen)

L1+ cGAN @ gen* = argming, Eryopop ||¥ — Ygen(®)|[1 + A Lpiser(gen)
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Image-to-Image Translation (Pix2Pix)
Isola et al., Nov. 2016

Input Ground truth L1 L1 +cGAN

cGAN
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Arial Photo to Map and Back

Map to aerial photo Aerial photo to map

Input input CULRUL
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Unpaired Image-to-Image Translation (Cycle GANSs)
Zhu et al., March 2017

We have two corpora of images, say images of zebras and unre-

lated images of horses, or photographs and unrelated paintings
by Monet.

We want to construct translations between the two classes.
Dy Dy
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Cycle Gans
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Cycle Gans

Horse =+ Zehra
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Unsupervised Machine Translation (UMT)
Lample et al, Oct. 2017, also Artetxe et al., Oct. 2017

In unsupervised machine translation the cycle loss is called
back-translation.
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Progressive GANSs
Progressive Growing of GANs, Karras et al., Oct. 2017
\J "

Figure 5: 1024 x 1024 images generated using the CELEBA-HQ dataset. See Appendix F for a
larger set of results, and the accompanying video for latent space interpolations.
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Progressive GANSs
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Training progresses
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Early GANs on ImageNet
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BigGans
Large Scale GAN Training, Brock et al., Sept. 2018

Figure 1: Class-conditional samples generated by our model.

This is a class-conditional GAN — it is conditioned on the
imagenet class label.

This generates 512 X 512 images without using progressive
training.
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StyleGAN

A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al., Dec. 2018
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StyleGAN: Architecture
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Style Transfer

g 22anog

g 20In0Ss WoIJ SI[KIS IsTL0D) g 991n0s wo1j s[K)s A[PPIA { woxy SuLj

StyleGAN
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StyleGAN Noise Variation




StyleGAN2 and StyleGAN3

StyleGan2 appeared in December of 2019 with significant im-
provements.

It was demonstrated to work on many classes of images, not
just faces.

StyleGANS appeared in June 2021.
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Projecting Images into Latent Space

Given an image, can we find a noise vector (a latent vector)
that generate a close approximation of the given image. Can
we invert the generator?

We can invert generated images. But we cannot invert (nearly
as accurately) newly sampled natural images.

By measuring the match between an image y and g(¢g~(y))
we can determine whether y was generated by StyleGAN2.

42



June 2023: StyleGAN Seems to “Understand” Images

StyleGAN knows Normal, Depth, Albedo, and More

Anand Bhattad Daniel McKee Derek Hoiem D.A. Forsyth
University of Illinois Urbana Champaign

(d) Albedo (e) Shading

—
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END



