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Generative Adversarial Networks (GANs)
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Modeling Probability Distributions on Images

Suppose we want to train a model of the probability distribu-
tion of natural images using cross-entropy loss.

Φ∗ = argmin
Φ

Ey∼pop − ln pΦ(y)

Images are continuous stuctured objects — a continuous value
at every pixel.

It is difficult to build probability models for images (or other
continuous structured values) that both accurately model the
distribution and also allow us to calculate pΦ(y).
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Generative Adversarial Networks (GANs)

GANs represent pΦ(y) implicitly by constructing an image gen-
erator and abandon the ability to compute pΦ(y).

The cross-entropy loss is replaced by an adversarial discrimi-
nator which tries to distinguish between generated images and
real images.
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Representing a Distribution with a Generator

z yΦ(z)

The random input z defines a probability density on images
yΦ(z). We will write this as pΦ(y) for the image y.
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Representing a Distribution with a Generator

z yΦ(z)

We want pΦ(y) to model a natural image distribution such as
the distribution over human faces.
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Representing a Distribution with a Generator

z yΦ(z)

We can sample from pΦ(y) by sampling z. But we cannot
compute pΦ(y) for y sampled from the population.
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Increasing Spatial Dimension

Reducing spatial dimention with strided convolution:

For x, y, j,∆x,∆y, i

L`+1[x, y, j] += W [∆x,∆y, i, j]L`[s ∗ x + ∆x, s ∗ y + ∆y, i]

Increasing spatial dimension with PyTorch ConvTranspose2d:

For x, y, j,∆x,∆y, i

L`+1[s ∗ x + ∆x, s ∗ y + ∆y, i] += W [∆x,∆y, i, j]L`[x, y, j]
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Generative Adversarial Networks (GANs)

Let y range over images. We have a generator pΦ. For i ∈
{−1, 1} we define a probability distribution over pairs 〈i, y〉
by

p̃Φ(i = 1) = 1/2

p̃Φ(y|i = 1) = pop(y)

p̃Φ(y|i = −1) = pΦ(y)

We also have a discriminator Pdisc(i|y) that tries to determine
the source i given the image y.

The generator tries to fool the discriminator.

gen∗ = argmax
gen

min
disc

E〈i, y〉∼p̃gen
− lnPdisc(i|y)
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GANs

The generator tries to fool the discriminator.

gen∗ = argmax
gen

min
disc

E〈i, y〉∼p̃gen
− lnPdisc(i|y)

Assuming universality (next slide) of both the genera-
tor pgen and the discriminator Pdisc we have pgen∗ = pop.

Note that this involves only discrete cross-entropy.
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The Universality Assumption

DNNs are universally expressive (can model any function) and
trainable (the desired function can be found by SGD).

Universality assumption is clearly false but is useful.

The success of GANs (to the extent tht they have been suc-
cessful) is a tribute to the utility of the universality ssumption.
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Jensen-Shannon Divergence

gen∗ = argmax
gen

min
disc

E〈i, y〉∼p̃gen − lnPdisc(i|y)

= argmin
gen

KL
(

pop,
pop + pgen

2

)
+ KL

(
pgen,

pop + pgen
2

)

gen∗ = argmin
gen

JSD(pop, pgen)
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GAN Mode Collapse

A major concern is “mode collapse” where the learned distribu-
tion omits a significant fraction of the population distribution.

There is no quantitative performance measure that provides a
meaningful guarantee against mode collapse.

In practice GANS are evaluated on FID score.
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The Frénchet Inception Score (FID)

Consider two distributions P and Q on Rd (perhaps two dis-
tributions on images).

Generative image models are (still) evaluated using a certain
meanure of the “distance” between the population distribution
and the generation distribution.

For GANs we cannot compute the probability of a generated
image so we cannot use cross entropy or KL-divergence.
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The Frénchet Inception Score (FID)
The Frénchet distance F (P,Q) can be measured (approxi-
mately) by sampling.
Let µ range over distributions on pairs (x, y) such that∑

y

µ(x, y) = P (x)

∑
x

µ(x, y) = Q(y)

F(P,Q) = inf
µ

(
E(x,y)∼µ ||x− y||

2
)1

2

This is a form of earth movers distance. It is also known as
the 2-Wasserstein distance.
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The Frénchet Inception Score (FID)

But rather than measure the L2 distance between images we
measure the L2 distance between the “inception feature vec-
tors” I(x) and I(y).

For an image x the feature vector I(x) is computed from a
certain layer in the inception image classification network.
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Generative Adversarial Nets

Goodfellow et al., June 2014

The rightmost column (yellow boarders) gives the nearest neigh-
bor in the training data to the adjacent column.
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Unsupervised Representation Learning ... (DC GANS)

Radford et al., Nov. 2015
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Unsupervised Representation Learning ... (DC GANS)

Radford et al., Nov. 2015
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Interpolated Faces

[Ayan Chakrabarti, January 2017]
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Conditional GANS

In the conditional case we have a population distribution over
pairs 〈x, y〉.

For conditional GANs we have a generator pgen(y|x) and a
discriminator Pdisc(i|x, y) where i = 1 if y the real “label” for
x and −1 if y is generated from x.

gen∗ = argmax
gen

min
disc

E〈x, y, i〉∼p̃gen
− lnPdisc(i|x, y)
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Image-to-Image Translation (Pix2Pix)

Isola et al., Nov. 2016

We assume a corpus of “image translation pairs” such as im-
ages paired with semantic segmentations.
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U-Nets

Pix2Pix uses a U-Net.

U-Net: Convolutional Networks for Biomedical Image Segmen-
tation, Ronneberger, Fischer and Brox, May 2015.

U-Nets are fundamental to current diffusion models such as
DALL·E.
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Adversarial Discrimination as an Additional Loss

gen∗ = argmin
gen

E(x,y)∼pop ||y − ygen(x)||1 + λ LDiscr(gen)

LDiscr(gen) = max
disc

Ex,y,i∼p̃gen lnPdisc(i|y, x)
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Discrimination as an Additional Loss

L1 : gen∗ = argmingen E(x,y)∼pop ||y − ygen(x)||1

cGAN : gen∗ = argmingen LDiscr(gen)

L1 + cGAN : gen∗ = argmingen E(x,y)∼pop ||y − ygen(x)||1 + λ LDiscr(gen)
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Image-to-Image Translation (Pix2Pix)

Isola et al., Nov. 2016
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Arial Photo to Map and Back
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Unpaired Image-to-Image Translation (Cycle GANs)

Zhu et al., March 2017

We have two corpora of images, say images of zebras and unre-
lated images of horses, or photographs and unrelated paintings
by Monet.

We want to construct translations between the two classes.
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Cycle Gans
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Cycle Gans
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Unsupervised Machine Translation (UMT)

Lample et al, Oct. 2017, also Artetxe et al., Oct. 2017

In unsupervised machine translation the cycle loss is called
back-translation.
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Feature Alignment by Discrimination

Text to Speech (Saito et al. Sept. 2017)

Minimum Generation Error (MGE) uses perceptual distortion
— a distance between the feature vector of the generated sound
wave and the feature vector of the original.

Perceptual Naturalness can be enforced by a feature discrimi-
nation loss.
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Adversarial Discriminative Domain Adaptation

Tzeng et al. Feb. 2017

A feature discrimination loss can be used to align source and
target features.
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Progressive GANs

Progressive Growing of GANs, Karras et al., Oct. 2017
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Progressive GANs
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Early GANs on ImageNet
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BigGans

Large Scale GAN Training, Brock et al., Sept. 2018

This is a class-conditional GAN — it is conditioned on the
imagenet class label.

This generates 512 X 512 images without using progressive
training.
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StyleGAN

A Style-Based Generator Architecture for Generative Adversarial Networks, Karras et al., Dec. 2018
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StyleGAN: Architecture
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StyleGAN: Style Transfer
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StyleGAN: Noise Variation
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StyleGAN2 and StyleGAN3

StyleGan2 appeared in December of 2019 with significant im-
provements.

It was demonstrated to work on many classes of images, not
just faces.

StyleGAN3 appeared in June 2021.
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Projecting Images into Latent Space

Given an image, can we find a noise vector (a latent vector)
that generate a close approximation of the given image. Can
we invert the generator?

This appears to be possible with StyleGAN2 but not with the
original even though StyleGAN2 produces better images.

By measuring the match between an image y and g(g−1(y))
we can determine whether y was generated by StyleGAN2.
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June 2023: StyleGAN Seems to “Understand” Images
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