
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Autumn 2023

Reinforcement Learning

1

Definition of Reinforcement Learning

RL is defined by the following properties:

•An environment with state.

• State changes are influenced by sequential decisions.

•Reward (or loss) depends on making decisions that lead
to desirable states.

2

Reinforcement Learning Examples

• Board games (chess or go)

•Atari Games (pong)

•Robot control (driving)

•Dialog

• Life

3

Policies

A policy is a way of behaving.

Formally, a (nondeterministic) policy maps a state to a prob-
ability distribution over actions.

π(at|st) probability of action at in state st

4

Imitation Learning

Construct a training set of state-action pairs (s, a) from ex-
perts.

Define stochastic policy πΦ(s).

Φ∗ = argmin
Φ

E(s,a)∼Train − ln πΦ(a | s)

This is just cross-entropy loss where we think of a as a “label”
for s.

5

Dangers of Imperfect Imitation Learning

Perfect imitation learning would reproduce expert behavior.
Imitation learning is off-policy — the state distribution in
the training data is different from that defined by the policy
being learned.

Imitating experts, such as expert fire eaters, can be dangersous.
“Don’t try this at home”.

Also, it is difficult to exceed expert performance by imitating
experts.

6

Markov Decision Processes (MDPs)

An MDP consists of a set S of states, a setA of allowed actions,
a reward function R and a next-state probability function PT .
We will use the following notation.

st ∈ S is the state at time t

at ∈ A is the action taken at time t.

rt = R(st, at) ∈ R is the reward at time t

PT (st+1|st, at) is the probability of st+1 given st and at.

The function R(s, a) can allow for a cost of the action a.

7

Optimizing Reward

In RL we maximize reward rather than minimize loss.

π∗ = argmax
π

R(π)

R(π) = Eπ
∑T
t=0 rt episodic reward (go)

or Eπ
∑∞
t=0 γ

trt discounted reward (financial planning)

or limT→∞
1
T

∑T
t=0 rt asymptotic average reward (driving)

8

The Value Function

For discounted reward:

V π(s) = Eπ
∑
t

γtrt | π, s0 = s

V ∗(s) = sup
π

V π(s)

π∗(a|s) = argmax
a

R(s, a) + γEs′∼PT (s′|s,a) V
∗(s′)

V ∗(s) = max
a

R(s, a) + γEs′∼PT (s′|s,a) V
∗(s′)

9

Value Iteration

Suppose the state space and action space are finite.

In that case we can do value iteration.

V0(s) = 0

Vi+1(s) = max
a

R(s, a) + γEs′∼PT (·|s,a) Vi(s
′)

If all rewards are non-negative then

Vi+1(s) ≥ Vi(s) Vi(s) ≤ V ∗(s) so lim
i→∞

Vi(s) exists

10

Value Iteration

Theorem: For discounted reward

V∞(s)
.
= lim
i→∞

Vi(s) = V ∗(s)

11

Proof

∆
.
= max

s
V ∗(s)− V∞(s)

= max
s

(
maxaR(s, a) + Es′|aγV

∗(s′)
−maxaR(s, a) + Es′|aγV∞(s′)

)

≤ max
s

max
a

(
R(s, a) + Es′|aγV

∗(s′)
−R(s, a) + Es′|aγV∞(s′)

)
= max

s
max
a

Es′|a γ(V ∗(s′)− V∞(s))

≤ γ∆

12

Summary

•A Policy π is a stochastic way of selection an action at a
state.

• Imitation Learning (cross entropy imitation of action
given state).

• Imitation Learning is off-policy.

• The value function V π(s).

•Value Iteration Vi+1(s) = argmaxa R(s, a)+γEs′ γVi(s
′)

13

The Q Function

For discounted reward:

Qπ(s, a) = Eπ
∑
t

γtrt | π, s0 = s, a0 = a

Q∗(s, a) = sup
π

Qπ(s, a)

π∗(a|s) = argmax
a

Q∗(s, a)

Q∗(s, a) = R(s, a) + γEs′∼PT (·|s,a) max
a′

Q∗(s′, a′)

14

Q Function Iteration

It is possible to define Q-iteration by analogy with value iter-
ation, but this is generally not discussed.

Value iteration is typically done for finite state spaces. Let S
be the number of states and A be the number of actions.

One update of a Q table takes O(S2A2) time while one update
of value iteration is O(S2A).

15

Q-Learning

When learning by updating theQ function we typically assume
a parameterized Q function QΦ(s, a).

Bellman Error:

BellΦ(s, a)
.
=

(
QΦ(s, a)−

(
R(s, a) + γ Es′∼PT (s′|s,a) max

a′
QΦ(s′, a′)

))2

Theorem: If BellΦ(s, a) = 0 for all (s, a) then the induced
policy is optimal.

Algorithm: Generate pairs (s, a) from the policy argmaxa QΦ(st, a)
and repeat

Φ -= η∇Φ BellΦ(s, a)

16

Issues with Q-Learning

Problem 1: Nearby states in the same run are highly correlated.
This increases the variance of the cumulative gradient updates.

Problem 2: SGD on Bellman error tends to be unstable. Fail-
ure of QΦ to model unused actions leads to policy change (ex-
ploration). But this causes QΦ to stop modeling the previous
actions which causes the policy to change back ...

To address these problems we can use a replay buffer.

17

Using a Replay Buffer

We use a replay buffer of tuples (st, at, rt, st+1).

Repeat:

1. Run the policy argmaxaQΦ(s, a) to add tuples to the replay
buffer. Remove oldest tuples to maintain a maximum buffer
size.

2. Ψ = Φ

3. for N times select a random element of the replay buffer
and do

Φ -= η∇Φ (QΦ(st, at)− (rt + γmax
a
QΨ(st+1, a))2

18

Replay is Off-Policy

Note that the replay buffer is from a mixture of policies
and is off-policy for argmaxa QΦ(s, a). This seems to be
important for stability.

This seems related to the issue of stochastic vs. deterministic
policies. More on this later.

19

Multi-Step Q-learning

Φ -=
∑
t

∇Φ

QΦ(st, at)−
D∑
δ=0

γδr(t+δ)

2

20

Asynchronous Q-Learning (Simplified)

No replay buffer. Many asynchronous threads each repeating:

Φ̃ = Φ (retrieve Φ)

using policy argmaxaQΦ̃(s, a) compute

st, at, rt, . . . , st+K, at+K, rt+K

Φ -= η
∑t+K−D

i=t ∇Φ̃

(
QΦ̃(si, ai)−

∑D
δ=0 γ

δri+δ

)2

(update Φ)

21

Human-level control through deep RL (DQN)

Mnih et al., Nature, 2015. (Deep Mind)

We consider a CNN QΦ(s, a).

22

Watch The Video

https://www.youtube.com/watch?v=V1eYniJ0Rnk

23

The REINFORCE Algorithm

Williams, 1992

REINFORCE is a Policy Gradient Algorithm

We assume a parameterized policy πΦ(a|s).

πΦ(a|s) is normalized while QΦ(s, a) is not.

24

Policy Gradient Theorem (Episodic Case)

Φ∗ = argmax
Φ

EπΦ R

∇Φ EπΦ
R =

∑
s0,a0,s1,a1,...,sT ,aT

∇ΦP (s0, a0, s1, a1, . . . , sT , aT) R

∇Φ P (. . .)R = P (S0)∇Φ π(a0)P (s1)π(a1) · · ·P (sT)π(aT) R

+P (S0)π(a0)P (s1)∇Φ π(a1) · · ·P (sT)π(aT) R
...

+P (S0)π(a0)P (s1)π(a1) · · ·P (sT)∇Φ π(aT) R

= P (. . .)

(∑
t

∇Φ πΦ(at)

πΦ(at)

)
R

25

Policy Gradient Theorem (Episodic Case)

∇Φ P (. . .)R = P (. . .)

(∑
t

∇Φ πΦ(at|st)
πΦ(at|st)

)
R

∇Φ EπΦ R = EπΦ

(∑
t

∇Φ ln πΦ(at|st)

)
R

26

Policy Gradient Theorem

∇Φ EπΦ R

= EπΦ

(∑
t

∇Φ ln πΦ(at|st)

)
R

= EπΦ

(∑
t

∇Φ ln πΦ(at|st)

)(∑
t

rt

)
= EπΦ

∑
t,t′
∇Φ ln πΦ(at|st) rt′

27

Policy Gradient Theorem

∇Φ EπΦ R =
∑
t,t′

Est,at,rt′ ∇Φ ln πΦ(at|st) rt′

For t′ < t we have

Ert′,st,at
rt′∇Φ ln πΦ(at|st) = Ert′,st

rt′
∑
at

πΦ(at|st) ∇Φ ln πΦ(at|st)

= Ert′,st
rt′
∑
at

∇Φ πΦ(at|st)

= Ert′,st
rt′ ∇Φ

∑
at

πΦ(at|st)

= 0

28

REINFORCE

∇Φ EπΦ R = EπΦ

∑
t, t′≥t

(∇Φ ln πΦ(at|st)) rt′

Sampling runs and computing the above sum over t and t′ is
Williams’ REINFORCE algorithm.

29

Optimizing Discrete Decisions

with Non-Differentiable Loss

The REINFORCE algorithm is (or was) used generally for
non-differentiable loss functions.

For example error rate and BLEU score are non-differentiable
— they are defined on the result of discrete decisions.

Φ∗ = argmax
Φ

Ew1,...,wn∼PΦ
BLEU

30

REINFORCE

∇Φ EπΦ R = EπΦ

∑
t, t′≥t

(∇Φ ln πΦ(at|st)) rt′

Sampling runs and computing the above sum over t and t′ is
Williams’ REINFORCE algorithm.

31

The Variance Issue

REINFORCE typically suffers from high variance of the gradi-
ent samples requiring very small learning rates and very long
convergence times.

∇Φ EπΦ R =
∑
t, t′≥t

Est,at,rt′ (∇Φ ln πΦ(at|st)) rt′

We will consider

• reducing variance due to rt′ with Actor-Critic methods.

• reducing variance due to st with Advantage Actor-Critic
methods.

• finally Asynchronous Advantge Actor-Critic Methods (A3C).

32

Actor-Critic Algorithms

“Policy Gradient Methods for Reinforcement Learning with
Function Approximation” Mansour, Sutton, McAllester, Singh,
2000, 560 citations in 2018, 3200 citations in 2022.

“Actor-Critic Algorithms”, Konda and Tsitsilas, 2000, 240 ci-
tatins in 2018, 4100 citations in 2022.

These two papers both appeared at NeurIPS 2000 and are
almost identical. The first is easier to read. The second has
additional insights.

33

Actor-Critic Algorithms

∇Φ EπΦ
R =

∑
t,t′

Est,at,rt′
∇Φ ln πΦ(at|st) rt′

=
∑
t

Est,at ∇Φ ln πΦ(at|st)
∑
t′≥t

Ert′ | st,at rt′

= EπΦ

∑
t

(∇Φ ln πΦ(at|st)) QπΦ(st, at)

Qπ(s, a) = Eπ

∑
t

rt | s0 = s, a0 = a

An Actor-Critic Theorem

∇Φ EπΦ R =
∑
t

Est,at (∇Φ ln πΦ(at|st))QπΦ(st, at)

The point is that we can now approximate QπΦ with neural
network QΘ.

We reduced the variance at the cost of approximating the ex-
pected future reward.

35

An Actor-Critic Algorithm

∇Φ EπΦ R ≈ EπΦ

∑
t

(∇Φ ln πΦ(at|st)) QΘ(st, at)

πΦ(a|s) is the “actor” and QΘ(s, a) is the “critic”

36

An Actor-Critic Algorithm

To get a theorem for following the loss gradient we need

Φ∗ = argmin
Φ

[R | πΦ]

∇Φ EπΦ
R = E

[∑
t

(∇Φ ln πΦ(at|st)) QΘ∗(Φ)(st, at) | πΦ

]
(1)

Θ∗(Φ) = argmin
Θ

E

[∑
t

(
QΘ(st, at)−

∑
t′≥t rt′

)2

| πΦ

]
(2)

A stationary point is now a Nash equilibrium of a two-player
game defined by (1) and (2).

37

An Actor-Critic Theorem

Thoerem:

∇Φ EπΦ R =
∑
t

Est,at (∇Φ ln πΦ(at|st)) (QπΦ(st, at)−V πΦ(st))

V πΦ(s) = Ea∼πΦ(a|s) Q
πΦ(s, a)

QπΦ(s, a) − V πΦ(s) is the “advantage” of deterministically
using a rather than sampling an action.

38

Proof

We have the following for any function V (s) of states.

Est,at (∇Φ ln πΦ(at|st))V (st)

= Est
∑
at

(πΦ(at|st) ∇Φ ln πΦ(at|st))V (st)

= Est
∑
at

(∇ΦπΦ(at|st))V (st)

= Est V (st)∇Φ

∑
at

πΦ(at|st) = 0

39

The Advantage Actor-Critic Algorithm

Φ∗ = argmin
Φ

[R | πΦ] (3)

∇Φ EπΦ
R = E

[∑
t

(∇Φ ln πΦ(at|st)) (QΘ∗(Φ)(st, at)− VΨ∗(Φ)(st)) | πΦ

]

Θ∗(Φ) = argmin
Θ

E

[∑
t

(
QΘ(st, at)−

∑
t′≥t rt′

)2

| πΦ

]
(4)

Ψ∗(Φ) = argmin
Ψ

E

[∑
t

(
QΘ∗(Φ)(st, at)− VΨ(st)

)2 | πΦ

]
(5)

We now have a three player game defined by (3), (4) and (5).

40

Advantage-Actor-Critic Algorithm

∇Φ EπΦ R ≈ EπΦ

∑
t

(∇Φ ln πΦ(at|st)) (QΦ(st, at)− VΦ(st))

We can sample an episode and then do

Φ +=
∑
t

η1 (∇Φ ln πΦ(ai|si)) (QΦ(st, at)− VΦ(st))

Φ -=
∑
t

η2 ∇Φ

(
QΦ(st, at)−

∑
t′≥t rt′

)2

Φ -=
∑
t

η3 ∇Φ (VΦ(st)−QΦ(st, a))2

41

Asynchronous Methods for Deep RL (A3C)

Mnih et al., Arxiv, 2016 (Deep Mind)

Φ̃ = Φ (retrieve global Φ)
using policy πΦ̃ compute st, at, rt, . . . , st+K, at+K, rt+K

Ri =

D∑
δ=0

γi+δr(i+δ)

Φ += η

t+K−D∑
i=t

(
∇Φ̃ ln πΦ̃(ai|si)

) (
Ri − VΦ̃(si)

)
Φ -= η

t+K−D∑
i=t

∇Φ̃ (VΦ̃(si)−Ri)2

42

Issue: Policies must be Exploratory

The optimal policy is deterministic — a(s) = argmaxaQ(s, a).

However, a deterministic policy never samples alternative ac-
tions.

Typically one forces a random action some small fraction of
the time.

43

Issue: Discounted Reward

DQN and A3C use discounted reward on episodic or long term
problems.

Presumably this is because actions have near term consequences.

This should be properly handled in the mathematics, perhaps
in terms of the mixing time of the Markov process defined by
the policy.

44

Issue: Discounted Reward

DQN and A3C use discounted reward on episodic or long term
problems.

Presumably this is because actions have near term consequences.

This should be properly handled in the mathematics, perhaps
in terms of the mixing time of the Markov process defined by
the policy.

45

Observation: Continuous Actions are Differentiable

In problems like controlling an inverted pendulum, or robot
control generally, a continuous loss can be defined and the
gradient of loss of with respect to a deterministic policy exists.

46

More Videos

https://www.youtube.com/watch?v=g59nSURxYgk
https://www.youtube.com/watch?v=rAai4QzcYbs

47

END

