
TTIC 31230 Fundamentals of Deep Learning

RL Problems.

Problem 1. REINFORCE for BLEU Translation Score. Consider train-
ing machine translation on a corpus of translation pairs (x, y) where x is, say,
an English sentence x1, . . . ,EOS and y is a French sentence y1, . . . ,EOS where
EOS is the “end of sentence” tag.

Suppose that we have a parameterized autoregressive model defining PΦ(yt|x, y1, . . . , yt−1)

so that PΦ(y1, . . . , yT |x) =
∏T ′

t=1 PΦ(yt|x, y1, . . . , yt−1) where yT is EOS.

For a sample ŷ from PΦ(y|x) we have a non-differentiable BLEU score BLEU(ŷ, y) ≥
0 that is not computed until the entire output y is complete and which we would
like to maximize.

(a) Give an SGD update equation for the parameters Φ for the REINFORCE
algorithm for maximizing Eŷ∼PΦ(y|x) for this problem.

Solution: For 〈x, y〉 samples form the training corpus of translation pairs, and
for ŷ1, . . . , ŷT sampled from PΦ(ŷ|x) we update Φ by

Φ += ηBLEU(ŷ, y)

T∑
t=1

∇Φ lnPΦ(ŷt|x, ŷ1, . . . , ŷt−1)

Samples with higher BLEU scores have their probabilities increased.

(b) Suppose that somehow we reach a parameter setting Φ where PΦ(y|x) assigns
probability very close to 1 for a particular translation ŷ so that in practice we will
always sample the same ŷ. Suppose that this translation ŷ has less than optimal
BLEU score. Can the REINFORCE algorithm recover from this situation and
consider other translations? Explain your answer.

Solution: No. The REINFORCE algorithm will not recover. The update will
only increase the probability of the single translation which it always selects. A
deterministic policy has zero gradient and is stuck.

(c) Modify the REINFORCE update equations to use a value function approx-
imation VΦ(x) to reduce the variance in the gradient samples and where VΦ is
trained by Bellman Error. Your equations should include updates to train VΦ(x)
to predict Eŷ∼P (y|x) BLEU(ŷ, y). (Replace the reward by the “advantage” of
the particular translation).

Solution: For 〈x, y〉 sampled form the training corpus of translation pairs,
and for ŷ1, . . . , ŷT sampled from PΦ(ŷ|x) we udate Φ by

Φ += η(BLEU(ŷ, y)− VΦ(x))

T∑
t=1

∇Φ lnPΦ(ŷt|x, ŷ1, . . . , ŷt−1)

Φ -= η∇Φ(VΦ(x)− BLEU(ŷ, y))2 = 2η(VΦ(x)− BLEU(ŷ, y))∇ΦVΦ(x)
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Problem 2. Rapid Mixing for Asymptotic Avergage Reward.

We consider a case where we are interested in asymptotic average reward.

R(π) = limT →∞ 1

T

T∑
t=1

rt

For a given policy π we have a Markov process over states — a well defined
state transition probability Pπ(st+1|st) defined by

Pπ(st+1|st) =
∑
a

π(a|s1)Pπ(s2|s1, a)

Under very mild conditions a Markov process has a well define stationary dis-
tribution on states which we will write Pπ(s). This distribution is “stationary”
in the sense that ∑

s1

Pπ(s1)Pπ(s2|s1) = Pπ(s2)

(a) Write the asymptotic average reward R(π) in terms of the stationary distri-
bution Pπ, the policy π(a|s) and the reward function R(s, a)

Solution:
R(π) = Es∼Pπ(s), a∼π(a|s) R(s, a)

(b) Now for ∆t > 1 we define Pπ(st+∆t|st) recursively as by

Pπ(st+∆t|st) =
∑

st+∆t−1

Pπ(st+∆t−1|st)Pπ(st+∆t|st+∆t−1)

We now assume a “mixing parameter” 0 < γ < 1 for π defined by the property∑
st+∆t

|Pπ(st+∆t|st)− Pπ(st+∆t)| ≤ γ∆t

We now define an advantage function on state-action pairs to be the “extra”
reward we get by taking action a (rather than drawing from π(a|s)) summed
over all time.

A(s, a) = E

∞∑
t=0

(rt −R(π)) | s0 = s, a0 = a

Assuming the reward is bounded by rmax and that we have the above mixing
parameter γ, give a (finite) upper bound on the infinite sum A(s, a).
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Solution:

E rt −R(π) |s0 = s, a0 = a, t > 0

=

(∑
st

Pπ(st|s0)Ea∼π(a|st) R(st, a)

)
−R(π)

=

(∑
st

(Pπ(st) + Pπ(st|s0)− Pπ(st))Ea∼π(a|st) R(st, a)

)
−R(π)

= R(π) +

(∑
st

(Pπ(st|s0)− Pπ(st))Ea∼π(a|st) R(st, a)

)
−R(π)

=
∑
st

(Pπ(st|s0)− Pπ(st))rmax

≤ rmaxγ
t

A(s, a) ≤ rmax

∞∑
t=0

γt =
rmax

1− γ

It can be shown that

∇ΦR(πΦ) = Es∼Pπ(s), a∼π(a|s) ∇Φ lnπΦ(a|s) A(s, a)

You do not have to prove this.
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