TTIC 31230, Fundamentals of Deep Learning
David McAllester, Autumn 2023

AlphaZero, MuZero and AlphaStar

The Breakthrough in Go (October 2015)

ALL S Ys TEMS GO

Timeline

October 2015: AlphaGo-Fan Defeats Fan Hui, European
Go Champion.

March 2016: AlphaGo-Lee Defeats Lee Sedol, world Go
Champion.

April 2017: AlphaGo-Zero learns from self play only and
defeats AlphaGo-Lee under match conditions 100 to O.

December 2017: AlphaZero Learns to play chess and shogi
and defeats stockfish (already super-human) in Chess.

September 2024: The AlphaZero algorithm is used to train
AlphaProof.

Go Elo Ratings (December 2017)
b.

5000 A

0- -

%"’Q%@a g, g, g, 20,
o @

S

g

Elo Rating
&
a

|

Learning Curve for Predicting Human Go Moves

'I‘\J
=
|

ay
o

h
(=]
1

s
=
1

10 -

== Reinforcement Learning
== Supervised Learning

=

Prediction accuracy on professional moves (%) ©

0 10 20 30 40 50 60 70
Training time (hours)

Classical Computer Chess Algorithms

First computer chess algorithm (min-max tree search) — Claude
Shannon, 1949

a-f3 pruning — various originators (including John McCarthy)
circa 1960.

- pruning was the backbone of all computer chess before

AlphaGo.

The branching factor in Go so large that alpha-beta tree search
is infeasible.

Monte-Carlo Tree Search (MCTS)
Brugmann 1993

First major advance in computer Go.

To estimate the value of a position (who is ahead and by how
much) run a cheap stochastic policy to generate a sequence of
moves (a rollout) and see who wins.

Select the move with the best rollout value.

(One Armed) Bandit Problems
Robbins 1952

Bandit problems were studied in an independent line of re-
search.

Consider a set of choices. The standard example is a choice
between different slot machines with different but unknown
expected payout. The “phrase one-armed bandit” refers to a
slot machine.

But another example of choices might be the moves in a game.

Bandit Problems

Consider a set of choices where each choice gets a stochastic
reward.

We can select a choice and get a reward as often as we like.

We would like to determine which choice is best using a limited
number of trials.

The Upper Confidence Bound (UCB) Algorithm
Lai and Robbins 1985

For each action choice (bandit) a, construct a confidence in-
terval for its average reward based on n trials for that acrtion.

pla) € pla) + 20(a)/v/n(a)
Always select

argmax [i(a) + 20(a)/+/n(a)

a

10

The Upper Confidence Tree (UCT) Algorithm
Kocsis and Szepesvari (2006), Gelly and Silver 2007

The UCT algorithm grows a tree by running “simulations”.

Fach simulation descends into the tree to a leaf node, expands
that leaf, and returns a value.

In the UCT algorithm each move choice at each position is
treated as a bandit problem.

We select the child (bandit) with the lowest upper bound as
computed from simulations selecting that child.

11

Bootstrapping from Game Tree Search

Vaness, Silver, Blair and Uther 2009

In bootstrapped tree search we do a tree search to compute a
min-max value Vi (s) using tree search with a static evaluator
Vo (s). We then try to fit the static value to the min-max value.

AP = —nVe (Vp(s) — me(5)>2

This is similar to minimizing a Bellman error between Vg(s)
and a rollout estimate of the value of s but where the rollout
estimate is replaced by a min-max tree search estimate.

12

The Value and Policy Networks

The main innovation of AlphaGo and AlphaZero is to use deep
networks for a value function and a policy function.

They also innovate with the structure of UCT and self-play
bootstrapping.

The result is an extremely general RL algorithm.

13

The Value and Policy Networks

molals) Vo(s)

Policy network Value network

p".rl (a |S) Vg (s
-

The final AlphaZero system 40 a layer ResNet with both a
policy head and a value head.

14

Tree Search Algorithm
Move selection involves a tree search.

FEach node represents a board position s and stores the follow-
ing information.

o Vp(s) — the value network value for the position s.

e The policy probabilities 7g(als) for each legal action a from
that position.

e An initially empty set of children nodes.

15

Tree Search Algorithm

The tree is grown by a series of “simulations”.

Each simulation starts at the root and recursively selects a
move.

The selected move a from state s may or may not correspond
to an existing child of s.

If the child exists the simulation continues down that path.

If the child does not exist a new child node is created for the
selected move and the simulation terminates.

Each simulation adds one new leat s and returns the value
Vo (s) to all parents of s in the tree.

16

Tree Search Algorithm

In addition to Vg(s), mg(als) and set of children nodes, each
node s contains the following for each possible action a.

e The number N (s, a) of simulations that have tried move a
from s. This is initially zero.

o The average V(s,a) of Vg(s) plus the values returned by
the the simulations that selected move a from position s.
This averages 1 + N (s, a) numbers.

17

Simulations and Upper Confidence Bounds

At a node s a simulation selects the move argmax, UCB(s, a)
where we have

UCB(s,a) =V (s,a) + Ay mgp(als)/(1+ N(s,a))

We set Ay, be large enough that UCB(s, a) will typically de-
crease as N (s, a) increases.

18

Root Action Selection

When the search is completed, we must select a move from the
root position to make actual progress in the game. For this we
use a post-search stochastic policy

7-‘-Sroot(a) X N<5roota a)ﬁ
where [is a temperature hyperparameter.

19

Constructing a Replay Buffer
We run a large number of games.

We construct a replay buffer of triples (s, g, R) where

e 5 Is a position encountered in a game and hence a root
position of a tree search.

o 7 is the distribution on a defined by P(a) x N(s,a)”.

e R € {—1,1} is the final outcome of the game for the player
whoes move it is at position s.

20

The Loss Function

Training is done by SGD on the following loss function.

[(Vals) — B\

—Arlog g (als)

\ g o2)

>|< .
¢ = argqr)nln E(S,W,R)NReplay, a~T

In principle this algorithm can be applied to any RL problem.

21

MuZero

Mastering Atari, Go, chess and shogi by planning
with a learned model, Schrittweiser et al., Nature 2020.

Doing a tree search over possible actions requires knowing (or
modeling) how a given action changes the state of the system.

For example, tree seach in chess requires knowing how an move
changes the state.

MuZero does not assume a known state representation.

22

MuZero

()-learning and advantage actor-critic do not require the ability
to plan ahead (tree search).

But AlphaZero uses Monte-Carlo tree search (MCTS) to “plan”
into the future.

MuZero uses the sequence of actions and observations as a
representation of state.

This matches, but does not improve, playing Go and Chess.

But it improves the performance on Atari games by allowing
tree search prior to action selection.

23

The Replay Buffer

A “state” is a sequence of observations (the game screen) and
actions.

s = (01,a1,...,0t at)

They construct a replay buffer from rollouts using a (learned)
action policy.

A replay entry e has the form

e =[St a1y Tty s O Ko Tt Ky Vit K41 |

1, is the observed reword at t+¢ and vy 1 is the (learned)
value network applied to state s; 1 g1

24

Training
The training loss function has the form
®* = argmin Fyrotout L7(s) + LY (s) + LE(s) + c||D||?
®

L7 trains the policy network to predict a;y1 (a cross-entropy loss).

LV trains the value network to predict vy g1 (square loss).

L trains the reward network to predict each 7, (square loss).

25

0O 02 04 06 08 1.0
Millions of training steps

These are human normalized scores averaged over all 57 Atari games. The
orange line is the previous state of the art system. Solid lines are average

scores and dashed lines are median scores.

26

AlphaStar

Grandmaster level in StarCraft 11 using multi-agent reinforce-
ment learning, Nature Oct. 2019, Vinyals et al.

StarCraft:

e Players control hundreds of units.

e Individual actions are selected from 1020 possibilities (an
action is a kind of procedure call with arguments).

e Cyclic non-transitive strategies (rock-paper-scissors).

e Imperfect information — the state is not fully observable.

27

The Paper is Vague

It basically says the following ideas are used:

A policy gradient algorithm, auto-regressive policies, self-attention
over the observation history, L. STMs, pointer-networks, scat-
ter connections, replay buffers, asynchronous advantage actor-
critic algorithms, TD(A) (gradients on value function Bellman
error), clipped importance sampling (V-trace), a new unde-
fined method they call UPGO that “moves policies toward
trajectories with better than average reward”, a value func-
tion that can see the opponents observation (training only), a
“z statistic” stating a high level strategy, supervised learning
from human play, a “league” of players (next slide).

28

The League

The league has three classes of agents: main (M), main ex-
ploiters (E), and league exploiters (L). M and L play against
everybody. E plays only against M.

29

A Rube Goldberg Contraption?

Rube Goldberg’s Inventions

30

Video

https: / /www.youtube.com /watch?v=UuhECwm31dM

31

END

