
TTIC 31230 Fundamentals of Deep Learning

AlphaZero Problems.

Backgound. A version of AlphaZero can be defined as follows.

To select a move in the game, first construct a search tree over possible moves
to evaluate options.

The tree is grown by running “simulations”. Each simulation descends into the
tree from the root selecting a move from each position until the selected move
has not been explored before. When the simulation reaches an unexplored move
it expands the tree by adding a node for that move. Each simulation returns
the value VΦ(s) for the newly added node s.

Each node in the search tree represents a board position s and stores the fol-
lowing information which can be initialized by running the value and policy
networks on position s.

• VΦ(s) — the value network value for the position s.

• For each legal move a from s, the policy network probability πΦ(s, a).

• For each legal move a from s, the number N(s, a) of simulations that have
taken move a from s. This is initially zero.

• For each legal move a from s with N(s, a) > 0, the average µ̂(s, a) of the
values of the simulations that have taken move a from position s.

In descending into the tree, simulations select the move argmaxa U(s, a) where
we have

U(s, a) =

{
λuπΦ(s, a) if N(s, a) = 0
µ̂(s, a) + λuπΦ(s, a)/N(s, a) otherwise

(1)

When the search is completed, we must select a move from the root position.
For this we use a post-search stochastic policy

πsroot(a) ∝ N(sroot, a)β (2)

where β is a temperature hyperparameter.

For training we construct

a replay buffer of triples (sroot, πsroot , z) (3)

accumulated from self play where sroot is a root position from a search during a
game, πsroot is the post-search policy constructed for sroot, and z is the outcome
of that game.

1

Training is then done by SGD on the following objective function.

Φ∗ = argmin
Φ

E(s,π,z)∼Replay, a∼π


(VΦ(s)− z)2

−λ1 log πΦ(a|s)

+λ2||Φ||2

 (4)

Problem 1. AlphaZero for BLEU Translation Score.
A version of AlphaZero can be defined as follows.

To select a move in the game, first construct a search tree over possible moves
to evaluate options.

The tree is grown by running “simulations”. Each simulation descends into the
tree from the root selecting a move from each position until the selected move
has not been explored before. When the simulation reaches an unexplored move
it expands the tree by adding a node for that move. Each simulation returns
the value VΦ(s) for the newly added node s.

Each node in the search tree represents a board position s and stores the fol-
lowing information which can be initialized by running the value and policy
networks on position s.

• VΦ(s) — the value network value for the position s.

• For each legal move a from s, the policy network probability πΦ(s, a).

• For each legal move a from s, the number N(s, a) of simulations that have
taken move a from s. This is initially zero.

• For each legal move a from s with N(s, a) > 0, the average µ̂(s, a) of the
values of the simulations that have taken move a from position s.

In descending into the tree, simulations select the move argmaxa U(s, a) where
we have

U(s, a) =

{
λuπΦ(s, a) if N(s, a) = 0
µ̂(s, a) + λuπΦ(s, a)/N(s, a) otherwise

(1)

When the search is completed, we must select a move from the root position.
For this we use a post-search stochastic policy

πsroot(a) ∝ N(sroot, a)β (2)

where β is a temperature hyperparameter.

For training we construct

a replay buffer of triples (sroot, πsroot , z) (3)

2

accumulated from self play where sroot is a root position from a search during a
game, πsroot is the post-search policy constructed for sroot, and z is the outcome
of that game.

Training is then done by SGD on the following objective function.

Φ∗ = argmin
Φ

E(s,π,z)∼Replay, a∼π


(VΦ(s)− z)2

−λ1 log πΦ(a|s)

+λ2||Φ||2

 (4)

Reformulate this algorithm to optimizing BLEU score in machine translation.
More specifically,

(a) Define the optimization of the BLEU score as a tree search problem. What
are the nodes and what are the moves?

(b) AlphaZero has three levels — complete games resulting in a final outcome z
— move selection at each position in a complete game based on UTC algorithm
— and simulations within the UTC algorithm. Describe how each of these can be
interpreted in an algorithm for optimizing BLEU score in machine translation.

(c) What do we take z to be in the replay buffer and in equation (4)?

Problem 2. Tuning λu

(a) If we increase λu encourage more diversity or less diversity in the actions
selected by simulations? Explain your answer.

(b) Consider the case of very large λu so that the term λuπΦ(a|s)/N(s, a) >>
µ̂(s, a). Equvalently we can change the definition of U(s, a) to be

U(s, a) =
πΦ(a|s)

min(1, N(s, a))
(5)

After running a some number of simulations from s define a∗ by

a∗ = argmax
a

U(s, a)

In other words a∗ is the move that would be expanded in the next simulation
visiting S. Consider a move a othr than a∗. Give a lower bound on N(s, a) in
terms of U(s, a∗) and πΦ(s, a) where U(s, a) is defined by (5).

Problem 2. Replacing the Policy with a Q-function. We consider re-
placing the policy network πΦ with a Q-value network QΦ so that each node s
stores the Q-values QΦ(s, a) rather than the policy probabilities πΦ(s, a). We
then replace (1) with

U(s, a) =

{
λuQΦ(s, a) if N(s, a) = 0
µ̂(s, a) + λuQΦ(s, a)/N(s, a) otherwise

(1′)

3

and leave (2) and (3) unchanged. Rewrite (4) to train QΦ(s, a) by minimizing
a squared “Bellman Error” between QΦ(s, a) and the outcome z over actions
drawn from the replay buffer’s stored policy. Presumably this version does not
work as well.

Problem 3. An advantage actor-critic version. We consider replacing the
policy network πΦ with an advantage network AΦ so that each node s stores the
A-values AΦ(s, a) rather than the policy probabilities πΦ(s, a). We now have
each node s also store µ̂(s) which equals the average value of the simulations
that go through state s. We then replace (1) with

U(s, a) =

{
λu(AΦ(s, a) + VΦ(s)) if N(s, a) = 0
µ̂(s, a) + λu(AΦ(s, a) + VΦ(s))/N(s, a) otherwise

(1′′)

and leave (2) unchanged and replace (3) by

a replay buffer of tuples (sroot, πsroot , z, µ̂(sroot), µ̂(sroot, a)) (3′)

Rewrite (4) to train AΦ(s, a) by minimizing a squared “Bellman Error” between
AΦ(s, a) and Â(s, a) defined as follows

Â(s, a) =

{
AΦ(s, a) if N(s, a) = 0
µ̂(s, a)− µ̂(s) otherwise

(5)

Although a valiant attempt, this version also presumably also does not work as
well.

4

