
TTIC 31230, Fundamentals of Deep Learning

David McAllester, Winter 2020

Representing Functions with Programs

Python, Assembler, and the Turing Tarpit

1

Representing Functions with Programs

Neural Turing Machines Alex Graves, Greg Wayne, Ivo Dani-
helka, 2014

(Actually a differentiable Von Neumann architecture)

The machine undergoes continuous state, discrete time, state
transitions defined a differentiable feed-forward circuit.

2

Compositional Attention Networks for Machine Reasoning

Hudson and Manning, ICLR 2018

The MAC cell is similar to a gated RNN cell used as the de-
coder in translation.

It is also similar to a Neural Turing Machine.

It was applied to image-based question answering and uses
attention over the image and the question during multi-step
“decoding”.

3

What about Python?

High level scripting languages such as Python seem to be the
most productive programming languages for human program-
mers.

Does Python represent a particularly efective universal learn-
ing bias?

Productivity in programming seems to be greatly enhanced by
functional expressions (functional programming) and object-
oriented programming (objects, classes an inheretitance).

This seems crucial if we want to somehow achieve I. J. Good’s
intelligence explosion.

4

The Turing Tarpit

But in theory the choice of programming language does not
matter.

For any two Turing universal languages, say Python and Assm-
bler, there exists an interpreter I for Python written in Assem-
bler where write I(h) for the assember interpreter I applied to
Python program h. We then get

|I(h)|Assembler = |h|Python + |I|Assembler

Bootstrapping layers of language can make the interpreter
small.

5

The Turing Tarpit

|I(h)|Assembler = |h|Python + |I|Assembler

Up to the additive constant of the interpreter, assembler gives
just as good a learning bias as Python.

Yet we know that the choice of language does matter — Python
is clearly better than assembler.

6

END

