TTIC 31230, Fundamentals of Deep Learning
David McAllester, Autumn 2024

Theorem Proving

MathZero?

At last — a computer program that
can beat a champion Go player iz

In 2017 AlphaZero learned to play Go, chess and shogi at a
superhuman level entirely from self play given only the rules
of the game.

Lots of people have wondered whether something similar might
be done for mathematics.

AlphaProof

The IMO (International Math Olypiad) is an annual mathe-
mamtics contest for high school students.

Of the six problems in July 2024 IMO., DeepMind’s Alpha-
Geometry solved the one geometry problem and AlphaProof
solved three of the remaining five.

The solutions were worth a silver medal. However, AlphaProof
took three days on a supercomputer rather than the 1.5 hours
humans get per problem.

There is a blog post with a high level description (discussed
below) but no paper has yet appeared.

3

Three Cultures

Mathematicians: Building an Al system that can learn to
play chess, Go or shogi is different from playing chess, Go or
shogi. Building a systems that can do mathematics different
from doing mathematics.

Al Researchers: There is now a significant literature on
using LLMs to generate formal proofs.

Logicians: The developers of formal verification systems that
ensure correctness are part of the formal methods community
(programming languages, type theory, and formally sound au-
tomated reasoning).

Mathematicians

Terence Tao (Fields Medalist) organized a group effort that

machine verified one of his (coauthored) recent papers. (Septem-
ber 2023).

Peter Scholze (Fields Medalist) organized a group effort that

machine verified what he considered his most important theo-
rem (2022).

Tim Gowers (Fields Medalist) is now focusing on improving
the level of automation in machine verfication systems.

Kevin Buzzard has announced a project to machine verify Fer-
mat’s last theorem.

Al Researchers

Generative Language Modeling for Automated Theorem Proving,
Polu and Sutskever, (Sept, 2020, OpenAl)

AlphaProof, Deep Mind, July 2024, unpublished

DeepSeek-Prover-V1.5: Harnessing Proof Assistant Feedback

for Reinforcement Learning and Monte-Carlo Tree Search
Xin, et al., August 2024

Logicians

Logicians are concerned with the formal foundations of math-
ematics and formal reasoning algorithms.

The choice of foundation is in many ways analogous to a choice
of formal programming languages. There are religious factions.

e Amorphous: Metamath
o ZFC: Mizar

e HOL: HOL light, Isabelle/HOL, HOL4
e Dependent Type Theory: Coq, Agda, Lean, Alfred

For programming the choice of language does matter — python
is better than assembler.

Logicians

Currently the dominant system (language) is Lean.

AlphaProof and DeepSeek use Lean to verity formal state-
ments.

[have built my own formal foundation I'm calling Alfred.

AlphaProof

The blog post includes the following figure.

Train

Informal

_ Formal e Formal
problems Formalize problems ' Search proofs

M Formalizer ~100M Solver
network network
o AlphaZero *

DeepSeek Pretraining Corpus

Since we don’t have a paper on AlphaProof I will focus on
DeepSeek Prover.

The DeepSeek Provers architecture seems to be consistent with
what we know about AlphaProof.

1. Train a FastText Model 2. Recall Math-Related Webpages
From Common Crawl
T ‘“_.3"'3 %o,
b) Fas NS
HN
'.A“-':Qi_

N7

Math Seed

Deduplicated Common Crawl

al orpus
40B HTML pages
4. Annotate Math-Related . .
URL Path From Labelers Hﬁ’;. Discover Math-Related Domains

DeepSeek collected 40B tokens of mathematical text.

10

Autoformalization

Autoformalization with Large Language Models (Google, May
2022)

DeepSeek-Prover: Advancing Theorem Proving in LLMs through
Large-Scale Synthetic Data (DeepSeek Al, May 2024)

11

Autoformalization in DeepSeek

-
o= ——*(1. Autoformalization)—0 |& _— (2 Medel Scoring and Hypothesis Rejection) —_—

In fpmi:l Math Formal Math High-Quality Formal
ren DS-Prover Statements DS-Prover Math Statements

=l b

| Synthesued Data

DS-P
gﬂw&r — (4. Fine-tuning Prover) 4—| + — (3. Statements vaing)

| Formal Statements with | 1
1 Correct Proofs I

r
Statements Proving

—.(Proving Original Statements >-l __________ 1
A

1
1 Synthesmed Data I

-8 E [NEYURST- Ea= s

Candidate F | j— === | Formal Statements with
andidate Formal | Correc t Proofs

A 4
Math Statements | AT e e e === |
Proving Negated Statements I

Autoformalization is the process of converting informal (En-
glish) statements into formal (machine readable) statements.

12

Automatic Blueprinting

The term “blueprint” is used in software engineering and refers
to specifications and dependencies for modules.

[t should be possible (77) to use autoformalization to convert
a mathematics paper or textbook into a blueprint for verifica-

t1on.

The blueprint is a partial order on formal statements where
each statement is to be proved from earlier statements.

The statements in proofs can included in the blueprint.

13

Self Play Training of Autoformalization

Autoformalization can be error-prone so one can sample dif-
ferent possible formalizations.

The correct formalization is one that can be proved and that
is used either as a step in a correct proot or in the proof of a
later theorem.

14

Searching for Proofs: Goals and Tactics
For a set of goals S and tactic T we have that T'(.S) is a new
set of goals such that solving T'(.S) solves S.
Example of tactics include:

apply: For applying a particular lemma under a certain in-
stantiation

simplify: For simplifying an algebraic expression.
induction: For applying mathematical induction.

show: For showing a particular intermediate step that can
then be added to the premises of a goal.

15

and-or Proof Trees

Given a set of goals we can try to solve the goals seperately by
applying a tactic to each individual goal.

This results in an and-or search tree. At an and node we need
solve all the chidren and at an or node we need to solve only
one of the children.

HyperTree Proof Search for Neural Theorem Prov-
ing, Lample et al., May 2022 (Meta).

16

and-or Proof Trees

An and-or proof search is similar to chess or Go in that we
can imagine two agents where one tries to prove the result and
other tries to retute it.

This is equivalent to min-max search where the maximizer
proves and the minimizer refutes.

We can then use a-f search, or Monte-Carlo tree search, or
AlphaZero.

17

Whole Proof Generation

Baldur: Whole-Proof (Generation and Repair with
Large Language Models, First et al., March 2023, (UMass
Ambherst, Google, UTUC).

One can repeatedly ask the language model to generate a com-
pete proot — a sequence of tactics that solves the given goal.

Whole proof generation is used as a subroutine in DeepSeek
Prover.

Whole proot generation is typically associated with or-branching
tree search where each node is a set of subgoals.

18

DeepSeekl1.5

DeepSeek 1.5 uses whole proof generation but treats these as
“rollouts” in an or-tree.

The steps in each generated whole proof become new nodes in
an or-tree.

Rollouts (whole proof generation) is done from internal nodes.

19

DeepSeek 1.5

import Mathlib
() import Aesop
a
set_option maxHeartbeats @
open BigOperators Real Nat Tepology Rat

/—- Compute the sum of all the roots of $(2x+3)(x-4)+(2x+3)(x-6)=05.
Show that it is 7/2.-/
theorem amc12a_2082_pl (f : C = C) (he : ¥V x, f x= (2 % x +3) % (x - 4) +
(2 % x +3) % (x = 6)) (h1 : Fintype (f-' {0})) :
3 y in (f-1' {@}).toFinset, y =7 / 2 := by m—
-- We show that the roots of the polynomial are -3/2 and 5.
have : (f-1' {@}).toFinset = {-(3 /2 : C), (5 : C)} := by
ext x
simp only [Set.mem_toFinset, Set.mem_singleton_iff, Set.Wel
Set.mem_setOf, Finset.mem_insert, Finset.mem_singletonl

/- tactic state:
case a
f C-C
he ¢ W (x : €), fx=1(2%x+3) % (x=4)+
(2 % x +3) * (x = 6)
1 & Fintype t(f -** {@})

Ffx=0wx= -(3/2)vx=5
-/

rw [he]
constructor
- intro h
-- We solve the eguation (2x + 3)[2x - 1@]
t (2% x+3) x(x-4+x-6)=0:

us two cases to solve.
ro_or_eq_zero_of_mul_eq_zero this

Error fropm
failed to
Linearorger

Lean 4;
Ynthesize

DISCARDED

20

Monte-Carlo
Tree Search

English Comments and Intrinsic Reward

DeepSeek uses monte-carlo tree search with an intrinsic reward
for exploration (generating new nodes).

DeepSeek inserts natural language comments for each tactic
application which might help guide the proot.

21

Self Play Imitation Learning

As they prove new formal theorems the new theorems are
added to a database of proofs used in “imitation fine tuning”.

import Mathlib Model Tralnlng

import Aesop

set_option maxHeartbeats @
open BigOperators Real Nat Topology Rat

/—— Compute the sum of all the roots of $(2x+3)(x-4)+(2x+3) (x—6)=0%.
Show that it is 7/2.-/
theorem amc12a_2002_pl (f : € =€) (he : ¥ x, fx = (2 x x +3) % (x - 4) +
(2 % x +3) * (x - 6)) (ha : Fintype (f-' {8})) :
Iy din (f-'' {@}).toFinset, y =7 / 2 := by
— We show that the roots of the polynomial are -3/2 and 5.
have : (f-!' {@}).toFinset = {-(3 / 2 : €), (5 : O)} := by

ext x
simp only [Set.mem_toFinset, Set.mem_singleton_iff, Set.mem_preimage, .
Set.mem_set0f, Finset.mem_insert, Finset.mem_singleton] Superv1sed

/- tactic state: Fine-tuning

* (x —4) + {2 % x +3) * (x - 6)

Whole-proof ;
Completion Re1nforcgment
Error Message from Lean 4 prover: Lea rn1ng
re [he] failed to synthesize
constructer LinearOrder (

rw [he] Passed the verification of
const ructor Leana prover Model Inference
5 + intro h
cases' eq_zero_ de solve the equation
with hl h2 ha (2%x+3) % (x-4+
- — Case 1: 2x by linear_combination h
left —— This gi us two cases to solve.
linarith_ cases' eq_zero_or_eq_zero_of_mul_eq_zero this
+ -- Case 2: 2x with hl h2
right . Case
linarith left
+ — We check tha linear_combination (1 / 2) x hl
2 10 =9

Single-pass
Sampling

rintro (rfl | r
— Now we compute t
rw [this] linear_combination {1 / 2) * h2
norm_num « —— We check that -3/2 and 5 are indeed roots.
rintro (rfl | rfl) <;> norm_num
we compute the sum of the roots.

Monte-Carlo
Tree Search

22

GRPO RL Optimization
DeepSeek uses a variant of PPO called GRPO for RL.

PPO is an advantage-actor-critic policy gradient algorithm.

VoR(mo) & Es.a, |(In7o(ar) Au(st,)

For a fixed advantage A\D(St, at) this gradient is a nonlinear
function of ©.

Rather than take a single linear step, PPO moves some dis-
tance along this nonlinear path.

In AlphaZero this happens when elements of the replay buffer
are reused.

DeepSeek does not use tree-search bootstrapping.

23

LLM Proofs Without Formal Verification

The blog post on alphaproof also says that they are experi-
menting with proofs generated entirely by natural language —
no formal verification. They say:

We also tested |the language only| approach on this
year’'s IMO problems and the results showed great promise.

24

OpenAl ol as a Proof Assistant

Terence Tao has a Mastodon post evauating ol as an assistant
for research mathematicians. He says:

The experience seemed roughly on par with trying
to advise a mediocre, but not completely incompetent,
(static simulation of a) graduate student.

25

Formal Language vs. Natural Language

In chess, Go, shogi, it is trivial to define the moves of the game
in a formal language.

This is also true in the game of Diplomacy where orders to gen-
erals have a fixed grammar and even statements in negotiation
are best viewed as proposals for orders.

Mathematics can also be defined in terms of a formal language.

This would suggest that English/formal translation is ulti-
mately not difficult and the hard challenge is solving the game
defined in the rules of formal mathematics.

26

Formal Language vs. Natural Language

An argument in favor of LLM reasoning (rather than formal
reasoning) is that mathematics requires intuition and intuition
is not formal.

Time will tell if intuition is best captured in natural language or
in some internal language with formal grammar but imprecise
semantics.

27

Algorithms in the Age of LLMs
What is the role of algorithms in the age of LLMs?

It seems unlikely that LLMs will ever replace compilers which,
by deep model standards, are incredibly efficient.

Lean includes certain decision procedures such as one for de-
ciding whether a linear equation follows from a given set of

linear equations and inequalities.

AlphaGeometry (a DeepMind geometry theorem prover) relies
on Wu's algorithm from the 1970s.

28

Can Lean be Strengthened?

There are well-known algorithms for general logic that are used
to great effect in SM'T (Sat Modulo a Theory) software verifiers
(such as Microsoft’s Z3).

Alfred is a system that I have built based on general logic
algorithms not present in Lean.

Alfred is intended as a competitor for Lean.

29

The Schroder-Berstein Theorem

For any two sets s and w, if there exists an injection of s into
w and an injection of w into s then there exists a bijection
between s and w.

30

The Schroder-Berstein Theorem

31

The Schroder-Berstein Theorem

32

The Schroder-Berstein Theorem in Alfred

theorem{SB;
(s:set,
w:set,
suppose (inhabited(injection(s,w))),
suppose(inhabited(injection(w,s))))
{
inhabited(bijection(s,w))
H
let(f:injection(s,w),
g:injection(w,s),
usef =l assert(x:s){
not (exists(y:w){
g(y)=x
&& not(exists(z:s){
f(z)=y && z:usef})})},
h = lambda(x:s){
if(x:usef,f(x),the(y:w){g(y)=x})}){
show(h:bijection(s,w))}}};

33

The Schroeder-Bernstein Theorem from Lean’s

/-— **The Schroder-Bernstein Theoremssk:
Given injections ‘a - B' and ‘B - a', we can get a bijection ‘a - B'. -/
theorem schroeder_bernstein {f : a - B} {g : B » a}
(hf : function.injective f) (hg : function.injective g) : 3 h : a » B, bijective h :=
begin
casesl is_empty_or_nonempty B with hB hB,
{ haveI : is_empty a, from function.is_empty f,
exact {_, ((equiv.equiv_empty a).trans (equiv.equiv_empty B).symm).bijective) },
set F : set a -0 set a :=
{ to_fun := A's, (g '" (f "' s)c)c,
monotone' := A s t hst, compl_subset_compl.mpr $ image_subset _ $
compl_subset_compl.mpr $ image_subset _ hst },
set s : set a := F.1lfp,
have hs : (g '' (f '' s)c)c = s, from F.map_1fp,

have hns : g '' (f '' s)c¢ = s¢, from compl_injective (by simp [hs]),
set g' := inv_fun g,

have g'g : left_inverse g' g, from left_inverse_inv_fun hg,

have hg'ns : g' '' s = (f '' s)¢, by rw [« hns, g'g.image_imagel,

set h : a » B := s.piecewise f g',
have : surjective h, by rw [« range_iff_surjective, range_piecewise, hg'ns, union_compl_self],
have : injective h,
{ refine (injective_piecewise_iff _).2 (hf.inj_on _, _, _),
{ intros x hx y hy hxy,
obtain (x', hx', rfl) : x € g '* (f '" s)c, by rwa hns,
obtain (y', hy', rfl) : y€g '* (f '" s)c, by rwa hns,
rw [g'g _, g'g _] at hxy, rw hxy },
{ intros x hx y hy hxy,
obtain (y', hy', rfl}) : yeg '' (f "' s)c, by rwa hns,
rw [g'g _] at hxy,
exact hy' (x, hx, hxy) } },
exact (h, <injective h>, <surjective h»)
end

34

MathLib

END

