
TTIC 31230 Fundamentals of Deep Learning, Fall 2022
Quiz 3

Problem 1. Consider a DDPM (denoising diffision probabilistic model) for
modeling P (y) with y ∈ Rd where the noise model is defined by

z0 = y

z` = αz`−1 +
√

1− α2 ε ε ∼ N (0, I)

For technical simplicity we take α to be constant for all ` and allow ` ≥ 1 to be
arbitrarily large.

(a) Write an equation for directly sampling z` from z0.

Solution: z` = α`z0 +
√

1− α2` ε ε ∼ N (0, I)

(b) Write an equation for sampling z(`+k)|` from P (z(`+k)|z`).

Solution: z(`+k)|` = αkz` +
√

1− α2k ε ε ∼ N (0, I)

(c) Repeat (a) and (b) with α = e
−1
N .

Solution:

z` = e
−`
N z0 +

√
1− e−2`

N ε ε ∼ N (0, I)

z(`+k)|` = e
−k
N z` +

√
1− e−2k

N ε ε ∼ N (0, I)

(d) Now let t range over fractions of the form k/N for k ≥ 0. Rewrite your
solution to (c) in terms of t rather than ` using ` = Nt and writing zNt as w(t)
and z(Nt+N∆t)|Nt as w(t+∆t|t). It should be possible to interpret your solution
for any real numbers t ≥ 0 and ∆t ≥ 0.

Solution:

w(t) = e−tw(0) +
√

1− e−2t ε ε ∼ N (0, I)

w((t+ ∆t)|t) = e−∆tw(t) +
√

1− e−2∆t ε ε ∼ N (0, I)

(e) For small ε we have e−ε ≈ 1 − ε. Use this approximation to simplify your
expression in (d) for w((t + ∆t)|t). Your solution should have the form of

1



a stochastic differential equaltion ∆w = ẇ∆t +
√

∆t δ with δ drawn from a
multivariate Gaussian independent of ∆t.

Solution:

w((t+ ∆t)|t) ≈ w(t)− w(t)∆t+
√

2∆t ε

∆w ≈ −w∆t+
√

∆t δ δ ∼ N (0, 2I)

Problem 2. Again consider the noise process from problem 1.

z0 = y

z` = αz`−1 +
√

1− α2 ε ε ∼ N (0, I)

Again we take α constant for all ` with 0 < α < 1. However we now take the
levels ` to be bounded with 1 ≤ ` ≤ L. We assume that αL is sufficiently small
that zL is independent of y.

Now consider training a deterministic decoder (aka denoiser) ŷΦ(z`, `) for recov-
ering the image y from z` using the following loss.

Φ∗ = argmin
Φ

Ey,`,z` ||y − zΦ(z`, `)||2 (1)

This is done in training the decoder in some successful diffusion models.

Although the model zΦ(z`, `) is trained to predict y it is used to generate z`−1

from z` in generation. The decoding process is sometimes made to be determin-
istic with

z`−1 = zΦ(z`, `) (2)

(a) Assuming universality for Φ, and assuming that zL is distributed as N (0, I)
independent of y, write zΦ∗(zL, L) as an expression not involving optimization
(not involving argmin).

Solution: Since zL is independent of y, the minimizer is just the mean image.

ŷΦ∗(zL, L) = E y

(b) Does your answer to (a) have implications for the diversity of generated
images in a model that uses both (1) and (2). Explain your answer.
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Solution: Part (a) gives that zL−1 is deterministically the mean image inde-
pendent of the noise zL. If all other stages in the decoding are deterministic
then the sampler should always get the same image.

(c) Why might an image generator based on (1) and (2) be diverse in practice?

Solution: The universality assumption does not hold in practice and hence
we should not expect z`−1(zL, L) to be truly constant independent of zL. This
variation can be amplified through the decoding process.

Problem 3. In a progressive VAE we are interested in modeling the distribution
pΦ(z`−1|z`, `). Current diffusion models use

z`−1 = zΦ(z`, `) + σδ δ ∼ N (0, I)

However, if want to reduce the number of layers we have more noise between
layers and the true conditional distribution p(z`−1|z`, `) will not be Gaussian.

This problem asks you to formulate a conditional Gaussian VAE model for the
conditional distribution pΦ(z`−1|z`, `). Here z` and ` are given and you are to
introduce a latent variable with an encoder, decoder and prior, for modeling
pΦ(z`−1|z`, `). In a Gaussian VAE we have that, without loss of generality, the
prior can be taken to be N (0, I). In a Gaussian VAE for images the latent
variable typically has smaller dimension than the images.

Letting ε denote the latent variable of the Gaussian VAE, and taking the prior
to be N (0, 1), sampling from the prior, followed by sampling from the decoder,
can be written as

z`−1 = zΦ(ε, z`, `) + σΦ(ε, z`, `)� δ ε ∼ N (0, I), δ ∼ N (0, I)

Here � denotes Hadamard product, or diminsionwise product, with (x�y)[i] =
x[i]y[i].

Write a similar equation for the Gaussian VAE encoder generating the latent
variable ε from z` and ` and give the objective function for jointly training the
encoder and the decoder.

Solution: For encoding the latent variable ε we introduce a model

ε = εΨ(z`−1, z`, `) + σΨ(z`−1, z`, `)� γ γ ∼ N (0, I)

The training objective is then

Φ∗,Ψ∗ = argmin
Φ,Ψ

Ey,`,z`−1,z`,ε KL(pΨ(ε|z`−1, z`, `),N (0, I))−ln pΦ(z`−1|ε, z`, `)

There are various equivalent ways of writing this which also get full credit.
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