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Some Information Theory
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Why Information Theory?

The fundamental equation of deep learning involves cross-entropy.

Cross-entropy is an information-theoretic concept.

Information theory arises in many places and many forms in
deep learning.
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Entropy of a Distribution

The entropy of a distribution P is defined by

H(P ) = Ey∼P [ − lnP (y)] in units of “nats”

H2(P ) = Ey∼P [ − log2P (y)] in units of bits
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Why Bits?

Why is − log2 P (y) a number of bits?

Example: Let P be a uniform distribution on 256 values.

Ey∼P [ − log2P (y)] = − log2
1

256
= log2 256 = 8 bits = 1 byte

1 nat = 1
ln 2 bits ≈ 1.44 bits

4



Shannon’s Source Coding Theorem

Why is − log2 P (y) a number of bits?

A prefix-free code for Y assigns a bit string c(y) to each y ∈ Y
such that no code string is prefix of any other code string.

For a probability distribution P on Y we consider the average
code length Ey∼P [ |c(y)|].

Theorem: For any c we have Ey∼P |c(y)| ≥ H2(P ).

Theorem: There exists c with Ey∼P |c(y)| ≤ H2(P ) + 1.
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Cross Entropy

Let P and Q be two distribution on the same set.

H(P,Q) = Ey∼P [ − ln Q(y)]

Φ∗ = argmin
Φ

H(Pop, PΦ)

H(P,Q) can be interpreted as the number of bits used to code
draws from P when using an optimal code for Q.

We will show
H(P,Q) ≥ H(P )
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KL Divergence

Let P and Q be two distribution on the same set.

Entropy : H(P ) = Ey∼P [− ln P (y)]

CrossEntropy : H(P,Q) = Ey∼P [− ln Q(y)]

KL Divergence : KL(P,Q) = H(P,Q)−H(P )

= Ey∼P − ln
Q(y)
P (y)

We will show KL(P,Q) ≥ 0 which implies H(P,Q) ≥ H(P ).



Proving KL(P,Q) ≥ 0: Jensen’s Inequality

For f convex (upward curving) we have

E[f (x)] ≥ f (E[x])
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Proving KL(P,Q) ≥ 0

KL(P,Q) = Ey∼P

[
− ln

Q(y)

P (y)

]
≥ − lnEy∼P

Q(y)

P (y)

= − ln
∑
y

P (y)
Q(y)

P (y)

= − ln
∑
y

Q(y)

= 0
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Asymmetry of Cross Entropy

Consider

Φ∗ = argmin
Φ

H(Pop, QΦ) (1)

Φ∗ = argmin
Φ

H(QΦ,Pop) (2)

We cannot use (2) because we cannot calculate Pop(y).

For a synthetic population where Pop(y) is computable (2)
produces mode collapse — QΦ is concentrated on the most
likely value of Pop.
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Asymmetry of KL Divergence

Consider

Φ∗ = argmin
Φ

KL(Pop, QΦ)

= argmin
Φ

H(Pop, QΦ) (1)

Φ∗ = argmin
Φ

KL(QΦ,Pop)

= argmin
Φ

H(QΦ,Pop)−H(QΦ) (2)

For a synthetic population where Pop(y) is computable but
PΦ cannot perfectly model Pop, (2) produces mode collapse.
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Conditional Entropy and Mutual Information

Assume a joint distribution Q on x and y.

conditional entropy:

H(y|x) = E(x,y)∼Q − lnP (y|x)

mutual information:

I(x, y) = H(y)−H(y|x)

Suppose you dont’t know anything about x and y. The mutual
information I(x, y) is the expectation over a draw of x of the
number of bits you learn about y.
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Continuous Densities

Expectations hide the discrete-continuous distinction

Ex∼P (x) f (x) is meaningful for both discrete and continuous

P (x).

Ex∼P (x) f (x) is the limit of the average of f (x) over ever
larger samples.

In order to write general equations we will use capital letter
notation P (x) for both continuous densities and discrete dis-
tributions.
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Differential Entropy

In the case of a continuous density (as opposed to a discrete
probability) we have the notion of differential entropy.

For a density P (x) on a real value x we have

H(x) = Ex∼P (x) [− lnP (x)]
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Differential Cross-Entropy can Diverge to −∞

Consider the unsupervised training objective.

Φ∗ = argmin
Φ

Ey∼train − lnPΦ(y)

The training set is finite (discrete).

For each y ∈ Train the density PΦ(y) can go to infinity.

This will drive the cross-entropy training loss to −∞.
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Differential Cross-Entropy can Diverge to −∞

Φ∗ = argmin
Φ

Ey∼train − lnPΦ(y)

For a Gaussian mixture model in which some mixtures are
focused on a single point the training loss goes to −∞.

We do not want to minizing an objective that diverges to −∞.
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The Gaussian Noise Trick (L2 Distortion)

Assume that Train is a set of pairs (x, y) with y ∈ Rd.

Linear regression invokes the Gaussian noise trick.

Define PΦ,σ(y|x) by (ŷΦ(x) + ε), ε ∼ N (0, I).

Φ∗ = argmin
Φ

E(x,y)∼Train [− lnPΦ,σ(y|x)]

= argmin
Φ

E(x,y)∼Train

[
||y − ŷ(x)||2

2σ2

]

L2 distortion is non-negative but goes to infinity as σ → 0.
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The Gaussian Noise Trick (L2 Distortion)

For sufficiently small σ we have that L2 distortion is simply
accounting for numerical precision.

Intuitively this corresponds to using a discrete distribution de-
fined by finite precision arithmetic with rounding error σ.

We should not think of the Gaussian noise trick as introducing
a Bayesian assumption.

We can prove PAC-Bayesian generalization guarantees for this
trick (no Bayesian assumptions).

18



The Laplacian Noise Trick (L1 Distortion)

define PΦ,λ(y|x) by (ŷΦ(x) + ε), ε ∼ softmaxε λ|ε|1

||ε||1 =
∑
i

|εi|

Φ∗ = argmin
Φ

E(x,y)∼Train [− lnPΦ,λ(y|x)]

= argmin
Φ

E(x,y)∼Train

[
||y − ŷ(x)||1

λ

]
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The Gaussian Noise Trick

“Finite Precision” Differential Entropy

Define Pσ(ỹ|y) by

ỹ = y + ε, ε ∼ N (0, I)

Define Hσ(y) by

Hσ(y) = Ey∼P (y),ỹ∼Pσ(ỹ|y)

[
− ln

P (y)

P (y|ỹ)

]
= I(y, ỹ) ≥ 0
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The Gaussian Noise Trick

“Finite Precision” Differential Entropy

If P (y) is smooth at the scale of σ we have P (y|ỹ) is a Gaussian
centered at ỹ.

Ey,ỹ[− lnP (y|ỹ)] ≈ d(lnσ + ln
√

2π + 1/2)

Hσ(y) ≈ Ey∼P (y) [− lnP (y)]− d(lnσ + ln
√

2π + 1/2)

For P smooth at scale σ this approximates mutual information
and is non-negative.

But Hσ(y) goes to infinity (slowly) as σ → 0.
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Summary

Entropy : H(P ) = Ey∼P [− ln P (y)]

CrossEntropy : H(P,Q) = Ey∼P [− ln Q(y)]

KL Divergence : KL(P,Q) = H(P,Q)−H(P )

Mutual Information : I(x, y) = H(y)−H(y|x)

H(P,Q) ≥ H(P ), KL(P,Q) ≥ 0, argminQ H(P,Q) = P
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END


