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Some Information Theory



Why Information Theory?

The fundamental equation of deep learning involves cross-entropy:.

Cross-entropy is an information-theoretic concept.

Information theory arises in many places and many forms in
deep learning.



Entropy of a Distribution

The entropy of a distribution P is defined by

H(P)=FE,.p|—InP(y) inunits of “nats”

Hy(P) = E,p| —logy P(y)| in units of bits



Why Bits?
Why is —logy P(y) a number of bits?

Example: Let P be a uniform distribution on 256 values.

Ey.p | —logy P(y)| = —logg -— = logy 256 = 8 bits = 1 byte

250

1 nat = 11 bits ~ 1.44 bits



Shannon’s Source Coding Theorem
Why is —logys P(y) a number of bits?

A prefix-free code for ) assigns a bit string c(y) to each y € Y
such that no code string is prefix of any other code string.

For a probability distribution P on ) we consider the average
code length E, p | |c(y)]].

Theorem: For any ¢ we have I, p |c(y)| = Ho(P).

Theorem: There exists ¢ with E, _p |c(y)| < Ho(P) + 1.
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Cross Entropy
Let P and () be two distribution on the same set.

H(P,Q) = Ey.p [ —In Qy)]

®* = argmin H(Pop, Pyp)
o

H(P, () can be interpreted as the number of bits used to code
draws from P when using an optimal code for ().

We will show
H(P,Q)> H(P)
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KL Divergence
Let P and () be two distribution on the same set.
Entropy : H(P) = E,.p [-In P(y)
CrossEntropy :  H(P, Q) = E,.p |—In Q(y)]

KL Divergence : KL(P, Q) = H(P, Q) — H(P)

yNP —lﬂ W

We will show K L(P, Q) > 0 which implies H(P, Q) >

H(P).



Proving KL(P,Q) > 0: Jensen’s Inequality

Convex

i
|
|
:
r Y
For f convex (upward curving) we have

E[f(z)] =z f(Elz])
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KL(P, Q) — EyNP

Proving KL(P,Q) > 0

Qy)
o %]
Qy)

> —InE, p 2

(y)

— Qy)
= —1 zy: P(y)P<y>

= —In Yy Q(y)
Y

= 0



Asymmetry of Cross Entropy

Consider

®* = argmin H(Pop, Q¢) (1)
o

®* = argmin H(Qg,Pop)  (2)
o

We cannot use (2) because we cannot calculate Pop(y).

For a synthetic population where Pop(y) is computable (2)
produces mode collapse — Q¢ is concentrated on the most
likely value of Pop.
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Asymmetry of KL Divergence

Consider

®* = argmin K L(Pop, Qg)
o

= argmin H (Pop, Q) (1)
o
®* = argmin KL(Qg, Pop)
o
= argql;nin H(Qg, Pop) — H(Qqp) (2)

For a synthetic population where Pop(y) is computable but
Py cannot perfectly model Pop, (2) produces mode collapse.
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Conditional Entropy and Mutual Information
Assume a joint distribution ) on x and y.
conditional entropy:

H(y|z) = E(:L',y)NQ — In P(y|z)

mutual information:

I(z,y) = H(y) — H(y|v)

Suppose you dont’t know anything about x and y. The mutual
information I(x,y) is the expectation over a draw of x of the
number of bits you learn about y.
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Continuous Densities
Expectations hide the discrete-continuous distinction

E, . p(y) f(x) is meaningful for both discrete and continuous

P(x).

E,p(z) f(z) is the limit of the average of f(x) over ever

larger samples.

In order to write general equations we will use capital letter
notation P(x) for both continuous densities and discrete dis-
tributions.
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Differential Entropy

In the case of a continuous density (as opposed to a discrete
probability) we have the notion of differential entropy.

For a density P(x) on a real value x we have

H(x) = Eyp(y) = o P(@)

i
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Differential Cross-Entropy can Diverge to —oo

Consider the unsupervised training objective.

P* = argql;nin Eywtrain — In PCD(:U)

The training set is finite (discrete).
For each y € Train the density Pgp(y) can go to infinity.
This will drive the cross-entropy training loss to —oo.
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Differential Cross-Entropy can Diverge to —oo

O* = argé)mn Eywtrain — In Pyp(y)

For a Gaussian mixture model in which some mixtures are
focused on a single point the training loss goes to —oo.

We do not want to minizing an objective that diverges to —oo.
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The Gaussian Noise Trick (Lo Distortion)
Assume that Train is a set of pairs (z,y) with y € R?.
Linear regression invokes the (Gaussian noise trick.

Define Py ;(y|z) by (9p(x) +€), €~ N(0,1).

O* = argqlznin By y)~Train |— In Po 5 (y|7)]

|W—§@W1

202

= argmin £, ) ~Train [
®

Lo distortion is non-negative but goes to infinity as o — 0.
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The Gaussian Noise Trick (Lo Distortion)

For sufficiently small o we have that Lo distortion is simply
accounting for numerical precision.

Intuitively this corresponds to using a discrete distribution de-
fined by finite precision arithmetic with rounding error o.

We should not think of the Gaussian noise trick as introducing
a Bayesian assumption.

We can prove PAC-Bayesian generalization guarantees for this
trick (no Bayesian assumptions).
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The Laplacian Noise Trick (L Distortion)

define Pgp x(y|z) by (Jo(x) +¢€), € ~ softmaxe Ale|q
el =D leil
1

O* = argql;nin By y)~Train |— 0 Py (y|7)]

||y—?)(ﬂf)||1]
A

= argmin E(:U,y)NTrain [
P
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The Gaussian Noise Trick

“Finite Precision” Differential Entropy

Define P;(gy|y) by
y=y-+e e~N(01I)

Define Hy(y) by

P(y)
Ho(y) = By Py) j~Palily) [_ = P(yl@)]

= I(y,y) >0
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The Gaussian Noise Trick

“Finite Precision” Differential Entropy

If P(y) is smooth at the scale of o we have P(y|y) is a Gaussian
centered at .

E, jl=InP(y|ly)] = d(lno +Inv2r +1/2)

Hy(y) ~ B, p() [— I P(y)] — d(lno + In v2r +1/2)

For P smooth at scale o this approximates mutual information
and is non-negative.

But Hs(y) goes to infinity (slowly) as o — 0.
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Entropy H(P) = E,.p |—In P(y)]
CrossEntropy H(P,Q) = E,.p [—In Qy)]
KL Divergence : KL(P,Q) = H(PQ)— H(P)

Mutual Information :  [I(x,y) = H(y) — H(y|z)
H(P,Q) > H(P), KL(P,Q)>0, argming H(P,Q) =P
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END



