TTIC 31230 Fundamentals of Deep Learning
Problems For Fundamental Equations.

Assume that probability distributions P(y) are discrete with -~ P(y) = 1.

Problem 1: Joint Entropy and Conditional Entropy We define condi-
tional entropy H (y|z) as follows

H(ylz) = Eqy —log P(ylz).
Given a distribution P(z,y) show

H(P)=H(z)+ H(y|z).

Problem 2: Unmeasurability of KL divergence and Population En-
tropy The problem of population density estimation is defined by the following
equation.

O* = argglin H(Pop,Qa) = Eyupop —In Qa(y)

This equation is used for language modeling — estimating the probability dis-
tribution over the population of English sentences that appear, say, in the New
York Times.

(a) Show the following.

®* = argmin H(Pop, Q¢) = argmin K L(Pop, Q)
> )

(b) Explain why we can measure H (Pop, Q¢) but cannot measure K L(Pop, Q)
for the structured object unconditional case (language modeling) and for the the
conditional (labeling) case (imagenet).

Problem 3: Asymmetry of cross entropy and KL-divergene Consider
the objective
P* = argmin H(P,Q) (1)
P

Define y* by

y* = argmax Q(y)
Y

Let 0, be the distribution such that d,(y) = 1 and d,(y’) = 0 for y’ # y. Show
that §,~ minimizes (1).

Next consider
P* = argmin KL(P,Q) (2)
P

Show that @ is the minimizer of (2).



Next consider a subset S of the possible values and let Qs be the restriction of
@ to the set S.

B 1 Qly) foryesS
Qsly) = Q(S) { 0 otherwise

Show that that KL(Qgs,Q) = —InQ(S) , which will be quite small if S covers
much of the mass.

Show that, in contrast, KL(Q,Qs) is infinite unless S covers all values with
non-zero propability.

When we optimize a model Q¢ under the objective K L(Qg, Q) we can get that
Qo covers only one high probability region (a mode) of @ (a problem called
mode collapse) while optimizing Q¢ under the objective KL(Q,Qs) we will
tend to get that Q4 covers all of Q. The two directions are very different even
though both are minimized at P = Q.

Problem 4. Data Processing Inequality Prove the data processing inequal-
ity that for any function f with z = f(y) we have H(z) < H(y).

Warning: This data processing inequality does not apply to contiuous densities.
A function on a continuous density can either expand or shrink the distribution
which increases or decrease its differential entropy respectively.

Problem 5: Mutual Information Consider a joint distribution P(z,y) on
discrete random variables x and y. We define the marginal distributions P(x)
and P(y) as follows.

)
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Ply) = Y Pley)

x

Let Q(x,y) be defined to be the product of marginals.
Qz,y) = P(x)P(y).
We define mutual information by
I(x,y) = KL(P,Q)
which I will write as
I(x,y) = KL(P(z,y), Q(x,y))
We define conditional entropy H (y|x) by

H(y“r) = Ei,yNP(LE,y) - lnP(y|x)



(a) Show
I(z,y) = H(y) — H(ylx) = H(x) — H(z|y)

(b) Explain why (a) implies H(x) > H(z|y).

(c) By stating (b) conditioned on z we have

Use this to show that the data process inequality applies to mutual information,
i.e., that for z = f(y) we have I(z, z) < I(x,y).

Problem 6. 20 pts Consider the distribution on non-negative integers given

by
. 1

(a) Using >°.2, ar® = 1% show that .~ P(i) = 1.

(b) Using >_i2, ir' = iz compute the numerical value of the entropy Hy(P)

for this distribution (with your answer in bits).

(c) Give a code word (a bit string) ¢(i) for each non-negative integer i such that
the code is prefix-free (no code word is a proper prefix of any other code word)
and such that expected code length E;.p|c(i)| equals the entropy in bits you
calculated in part (b).

Problem 7. 30 pts Problem 2 was on converting probabilities to codes. This
problem is on converting codes to probabilities. Consider any prefx-free code
¢(i) for the non-negative integers i. Give a sampling procedure that either
returnT (au)ll integer ¢ or fails to terminate and where the probability of returning
i is 271

Problem 8. 30 pts Shannon’s source coding theorem states that for any

prefix-free code we have
Eqynple(x)] = Hy(P)

and for any P there exists a prefix-free code such that
E,.plc(z)| < Hy(P) + 1.

In this problem we will prove the second inequality. We consider the case of a
countably infinite set where each element has nonzero probability and consider
the following procedure for constructing a code.

Enumerate the elements of X’ as x1, x2, x3, ... in order of decreasing
probability.

Initialize the code to be empty (no x; is asigned any code)



For ¢ = 1,2,3,... assign an unused code c¢(z;) to x; such that
le(x;)| = [—logy P(x;)] and such that no preifx of that code word
has been previously assigned.

Suppose we have defined code words ¢(z1), ..., ¢(x;) and are trying to find a
code word for x;41.

(a) Explain why no unassigned code word of length [—log, P(z;+1)] can be a
prefix of any previously assigned code word.

(b) Explain why there must exist an unallocated code word c¢(x;11) satisfying
the specified conditions. Hint: Show that the probability of non-termination for
the procedure of problem 7 is nonzero.

problem 3.

Problem 9: The ELBO We consider a model distribution Qg(z,y) with
marginal distribution

Qa(y) =Y Qu(zy).

We are interested in minimizing the unconditional (or unsupervised) cross-
entropy of this model.

®* = argmin By rrain — In Qo (y)
@

For many models of interest Q4 (2, y) can be efficiently computed as Q¢ (2)Qs (y|2)
but Q¢ (y) is intractable to compute. In a variational auto-encoder we train a
second model Qy(z|y) and use the following inequality

nQs(y) > FELBO
Q‘i’(zyy)

= In =
2~Q(zly) Qu(z|y)

Rather than minimize the cross entropy we can maximize the ELBO (the Evi-
dence Lower BOund) which corresponds to minimizing an upper bound on the
cross entropy. Maximization of the ELBO with respect to model parameters ®
and U define a variational auto encoder (VAE). We will consider this in much
more detail later in the class. For now we just consider the formal equations.

= F

a. The ELBO can be written as

Qa(y)Qa(2]y)
Qu(z]y)
Here we have that the ELBO is the expectation of a log of a product of three

terms. Separate all three terms and express the terms other than In Q¢ (y) as
entropies or cross entropies.

ELBO = E, 5., In



b. Now rewrite the ELBO by separating it into one the term for Q¢ (y) and
one term for the other two combined and write the combined term as a KL
divergence. Explain why your expression implies that the ELBO is a lower
bound on In Q4 (y).

Problem 10: The Donsker-Varadhan Bound (a) For three distributions
P, Q and G show the following equality.

(1w CW)
KL(P,Q) = (EyNP g (y)> + KL(P,G)

(b) Show that this implies

G(y)
Q(y)

KL(P,Q)=sup Ey.p In
e
(c) Now define
Gly) = % Qy)e”) (4)

Z = ) Qye (5)

Show that if @ has full support (is nonzero everywhere) then any distribution
G with full supprt can be represented by a score s(y) satisfying (4) and that
under this change of variables we have

KL(P,Q)=sup Eywp s(y) —InE,.q e
S

This is the Donsker-Varadhan variational representation of KL-divergence. This
can be used in cases where we can sample from P and ) but cannot compute
P(y) or Q(y). Instead we can use a model score sg(y) where sg(y) can be
computed.



