
TTIC 31230 Fundamentals of Deep Learning
Problems For Fundamental Equations.

Assume that probability distributions P (y) are discrete with
∑

y P (y) = 1.

Problem 1: Joint Entropy and Conditional Entropy We define condi-
tional entropy H(y|x) as follows

H(y|x) = Ex,y − logP (y|x).

Given a distribution P (x, y) show

H(P ) = H(x) +H(y|x).

Problem 2: Unmeasurability of KL divergence and Population En-
tropy The problem of population density estimation is defined by the following
equation.

Φ∗ = argmin
Φ

H(Pop, QΦ) = Ey∼Pop − ln QΦ(y)

This equation is used for language modeling — estimating the probability dis-
tribution over the population of English sentences that appear, say, in the New
York Times.

(a) Show the following.

Φ∗ = argmin
Φ

H(Pop, QΦ) = argmin
Φ

KL(Pop, QΦ)

(b) Explain why we can measure H(Pop, QΦ) but cannot measure KL(Pop, QΦ)
for the structured object unconditional case (language modeling) and for the the
conditional (labeling) case (imagenet).

Problem 3: Asymmetry of cross entropy and KL-divergene Consider
the objective

P ∗ = argmin
P

H(P,Q) (1)

Define y∗ by
y∗ = argmax

y
Q(y)

Let δy be the distribution such that δy(y) = 1 and δy(y′) = 0 for y′ 6= y. Show
that δy∗ minimizes (1).

Next consider
P ∗ = argmin

P
KL(P,Q) (2)

Show that Q is the minimizer of (2).
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Next consider a subset S of the possible values and let QS be the restriction of
Q to the set S.

QS(y) =
1

Q(S)

{
Q(y) for y ∈ S
0 otherwise

Show that that KL(QS , Q) = − lnQ(S) , which will be quite small if S covers
much of the mass.

Show that, in contrast, KL(Q,QS) is infinite unless S covers all values with
non-zero propability.
When we optimize a model QΦ under the objective KL(QΦ, Q) we can get that
QΦ covers only one high probability region (a mode) of Q (a problem called
mode collapse) while optimizing QΦ under the objective KL(Q,QΦ) we will
tend to get that QΦ covers all of Q. The two directions are very different even
though both are minimized at P = Q.

Problem 4. Data Processing Inequality Prove the data processing inequal-
ity that for any function f with z = f(y) we have H(z) ≤ H(y).

Warning: This data processing inequality does not apply to contiuous densities.
A function on a continuous density can either expand or shrink the distribution
which increases or decrease its differential entropy respectively.

Problem 5: Mutual Information Consider a joint distribution P (x, y) on
discrete random variables x and y. We define the marginal distributions P (x)
and P (y) as follows.

P (x) =
∑
y

P (x, y)

P (y) =
∑
x

P (x, y)

Let Q(x, y) be defined to be the product of marginals.

Q(x, y) = P (x)P (y).

We define mutual information by

I(x, y) = KL(P,Q)

which I will write as

I(x, y) = KL(P (x, y), Q(x, y))

We define conditional entropy H(y|x) by

H(y|x) = Ex,y∼P (x,y) − lnP (y|x).
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(a) Show
I(x, y) = H(y)−H(y|x) = H(x)−H(x|y)

(b) Explain why (a) implies H(x) ≥ H(x|y).

(c) By stating (b) conditioned on z we have

H(x|z) ≥ H(x|y, z).

Use this to show that the data process inequality applies to mutual information,
i.e., that for z = f(y) we have I(x, z) ≤ I(x, y).

Problem 6. 20 pts Consider the distribution on non-negative integers given
by

P (i) =
1

2i+1
.

(a) Using
∑∞

i=0 ar
i = a

1−r show that
∑∞

i=0 P (i) = 1.

(b) Using
∑∞

i=0 iri = r
(1−r)2 compute the numerical value of the entropy H2(P )

for this distribution (with your answer in bits).

(c) Give a code word (a bit string) c(i) for each non-negative integer i such that
the code is prefix-free (no code word is a proper prefix of any other code word)
and such that expected code length Ei∼P |c(i)| equals the entropy in bits you
calculated in part (b).

Problem 7. 30 pts Problem 2 was on converting probabilities to codes. This
problem is on converting codes to probabilities. Consider any prefx-free code
c(i) for the non-negative integers i. Give a sampling procedure that either
returns an integer i or fails to terminate and where the probability of returning
i is 2−|c(i)|.

Problem 8. 30 pts Shannon’s source coding theorem states that for any
prefix-free code we have

Ex∼P |c(x)| ≥ H2(P )

and for any P there exists a prefix-free code such that

Ex∼P |c(x)| ≤ H2(P ) + 1.

In this problem we will prove the second inequality. We consider the case of a
countably infinite set where each element has nonzero probability and consider
the following procedure for constructing a code.

Enumerate the elements of X as x1, x2, x3, . . . in order of decreasing
probability.

Initialize the code to be empty (no xi is asigned any code)
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For i = 1, 2, 3, . . . assign an unused code c(xi) to xi such that
|c(xi)| = d− log2 P (xi)e and such that no preifx of that code word
has been previously assigned.

Suppose we have defined code words c(x1), . . ., c(xi) and are trying to find a
code word for xi+1.

(a) Explain why no unassigned code word of length d− log2 P (xi+1)e can be a
prefix of any previously assigned code word.

(b) Explain why there must exist an unallocated code word c(xi+1) satisfying
the specified conditions. Hint: Show that the probability of non-termination for
the procedure of problem 7 is nonzero.
problem 3.

Problem 9: The ELBO We consider a model distribution QΦ(z, y) with
marginal distribution

QΦ(y) =
∑
z

QΦ(z, y).

We are interested in minimizing the unconditional (or unsupervised) cross-
entropy of this model.

Φ∗ = argmin
Φ

Ey∼Train − lnQΦ(y)

For many models of interestQΦ(z, y) can be efficiently computed asQΦ(z)QΦ(y|z)
but QΦ(y) is intractable to compute. In a variational auto-encoder we train a
second model Q̃Ψ(z|y) and use the following inequality

lnQΦ(y) ≥ ELBO

= Ez∼Q̃(z|y) ln
QΦ(z, y)

Q̃Ψ(z|y)

Rather than minimize the cross entropy we can maximize the ELBO (the Evi-
dence Lower BOund) which corresponds to minimizing an upper bound on the
cross entropy. Maximization of the ELBO with respect to model parameters Φ
and Ψ define a variational auto encoder (VAE). We will consider this in much
more detail later in the class. For now we just consider the formal equations.

a. The ELBO can be written as

ELBO = Ez∼Q̃(z|y) ln
QΦ(y)QΦ(z|y)

Q̃Ψ(z|y)
.

Here we have that the ELBO is the expectation of a log of a product of three
terms. Separate all three terms and express the terms other than lnQΦ(y) as
entropies or cross entropies.
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b. Now rewrite the ELBO by separating it into one the term for QΦ(y) and
one term for the other two combined and write the combined term as a KL
divergence. Explain why your expression implies that the ELBO is a lower
bound on lnQΦ(y).

Problem 10: The Donsker-Varadhan Bound (a) For three distributions
P , Q and G show the following equality.

KL(P,Q) =

(
Ey∼P ln

G(y)

Q(y)

)
+KL(P,G)

(b) Show that this implies

KL(P,Q) = sup
G

Ey∼P ln
G(y)

Q(y)
(3)

(c) Now define

G(y) =
1

Z
Q(y)es(y) (4)

Z =
∑
y

Q(y)es(y) (5)

Show that if Q has full support (is nonzero everywhere) then any distribution
G with full supprt can be represented by a score s(y) satisfying (4) and that
under this change of variables we have

KL(P,Q) = sup
s

Ey∼P s(y)− lnEy∼Q es(y)

This is the Donsker-Varadhan variational representation of KL-divergence. This
can be used in cases where we can sample from P and Q but cannot compute
P (y) or Q(y). Instead we can use a model score sΦ(y) where sΦ(y) can be
computed.
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