
TTIC 31230 Fundamentals of Deep Learning
Problems For Fundamental Equations.

Assume that probability distributions P (y) are discrete with
∑

y P (y) = 1.

Problem 1: Joint Entropy and Conditional Entropy We define condi-
tional entropy H(y|x) as follows

H(y|x) = Ex,y − logP (y|x).

Given a distribution P (x, y) show

H(P ) = H(x) +H(y|x).

Problem 2: Unmeasurability of KL divergence and Population En-
tropy The problem of population density estimation is defined by the following
equation.

Φ∗ = argmin
Φ

H(Pop, QΦ) = Ey∼Pop − ln QΦ(y)

This equation is used for language modeling — estimating the probability dis-
tribution over the population of English sentences that appear, say, in the New
York Times.

(a) Show the following.

Φ∗ = argmin
Φ

H(Pop, QΦ) = argmin
Φ

KL(Pop, QΦ)

Solution:

argmin
Φ

KL(Pop, QΦ) = argmin
Φ

H(Pop, QΦ)−H(Pop)

Since H(Pop) does not depend on Φ the minima are the same.

(b) Explain why we can measure H(Pop, QΦ) but cannot measure KL(Pop, QΦ)
for the structured object unconditional case (language modeling) and for the the
conditional (labeling) case (imagenet).

Solution: We assume that the model is such that QΦ(y) can be computed.
For example, an auto-regressive language model allows us to compute QΦ(y) for
a sentence y as a product of next-word probabilities.
Assuming QΦ(y) can be computed, we can compute (a good approximation to)
Ey∼Pop − lnQΦ(y) by sampling sentences y1, . . . yn from Pop and computing

Ĥ(Pop, QΦ) =
1

N

∑
i

− lnQΦ(yi).

The confidence interval for this estimate shrinks as 1/
√
N .
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However, in the case of strcutured objects, such as sentences, while we can
sample from Pop, we cannot compute Pop(y). Therefore we have no way of
computing or even approximating, H(Pop). So we cannot compute

KL(Pop, QΦ) = H(Pop, QΦ)−H(Pop).

For the conditional case we have

KL(Pop(y|x), QΦ(y|x)) = Ex,y∼Pop ln
Pop(y|x)

QΦ(y|x)

H(Pop(y|x), QΦ(y|x)) = Ex,y∼Pop − lnQΦ(y|x)

We assume thatQΦ(y|x) can be computed and that allowsH(Pop(y|x), QΦ(y|x))
to be computed (to a good approximation) by taking the average of a sample.
However, we cannot compute Pop(y|x), even for binary classification, because
(in most applications) we will never sample the same x twice.

Problem 3: Asymmetry of cross entropy and KL-divergene Consider
the objective

P ∗ = argmin
P

H(P,Q) (1)

Define y∗ by
y∗ = argmax

y
Q(y)

Let δy be the distribution such that δy(y) = 1 and δy(y′) = 0 for y′ 6= y. Show
that δy∗ minimizes (1).

Solution: Consider an arbitrary distribution P . We must show thatH(P,Q) ≥
H(δy∗ , Q).

Q(y) ≤ Q(y∗)

− lnQ(y) ≥ − lnQ(y∗)

Ey∼P − lnQ(y) ≥ − lnQ(y∗)

H(P,Q) ≥ − lnQ(y∗) = H(δy∗ , Q)

Next consider
P ∗ = argmin

P
KL(P,Q) (2)

Show that Q is the minimizer of (2).

Solution: This follows from

KL(P, P ) = Ey∼P ln
P (x)

P (x)
= 0

KL(P,Q) ≥ 0
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Next consider a subset S of the possible values and let QS be the restriction of
Q to the set S.

QS(y) =
1

Q(S)

{
Q(y) for y ∈ S
0 otherwise

Show that that KL(QS , Q) = − lnQ(S) , which will be quite small if S covers
much of the mass.

Solution:

KL(QS , Q) = Ey∼QS
ln
QS(y)

Q(y)

= Ey∼QS
ln
Q(y)/Q(S)

Q(y)

= Ey∼QS
− lnQ(S)

= − lnQ(S)

Show that, in contrast, KL(Q,QS) is infinite unless S covers all values with
non-zero propability.

Solution: If there exists a value ỹ not in S with P (ỹ) > 0 then

Ey∼P − lnPS(y) ≥ −P (ỹ) ln 0 =∞

When we optimize a model QΦ under the objective KL(QΦ, Q) we can get that
QΦ covers only one high probability region (a mode) of Q (a problem called
mode collapse) while optimizing QΦ under the objective KL(Q,QΦ) we will
tend to get that QΦ covers all of Q. The two directions are very different even
though both are minimized at P = Q.

Problem 4. Data Processing Inequality Prove the data processing inequal-
ity that for any function f with z = f(y) we have H(z) ≤ H(y).

Warning: This data processing inequality does not apply to contiuous densities.
A function on a continuous density can either expand or shrink the distribution
which increases or decrease its differential entropy respectively.

Problem 5: Mutual Information Consider a joint distribution P (x, y) on
discrete random variables x and y. We define the marginal distributions P (x)
and P (y) as follows.

P (x) =
∑
y

P (x, y)

P (y) =
∑
x

P (x, y)
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Let Q(x, y) be defined to be the product of marginals.

Q(x, y) = P (x)P (y).

We define mutual information by

I(x, y) = KL(P,Q)

which I will write as

I(x, y) = KL(P (x, y), Q(x, y))

We define conditional entropy H(y|x) by

H(y|x) = Ex,y∼P (x,y) − lnP (y|x).

(a) Show
I(x, y) = H(y)−H(y|x) = H(x)−H(x|y)

Solution:

I(x, y) = Ex,y∼P (x,y) ln
P (x, y)

P (x)P (y)

= Ex,y∼P (x,y) ln
P (x)P (y|x)

P (x)P (y)

= Ex,y∼P (x,y) ln
P (y|x)

P (y)

=
(
Ey∼P (y) − lnP (y)

)
−
(
Ex,y∼P (x,y) − lnP (y|x)

)
= H(y)−H(y|x)

The other equality is similar.

(b) Explain why (a) implies H(x) ≥ H(x|y).

Solution: This is because the information I(x, y) is a KL divergence which is
always non-negative.

(c) By stating (b) conditioned on z we have

H(x|z) ≥ H(x|y, z).

Use this to show that the data process inequality applies to mutual information,
i.e., that for z = f(y) we have I(x, z) ≤ I(x, y).

Solution: We first note that for discrete distributions where z is a function
of y we have P (x|y, z) = P (x|y) which implies that H(x|y, z) = H(x|y). so the
above inequality can be written as

H(x|z) ≥ H(x|y).
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The result then follows from

I(x, z) = H(x)−H(x|z)

and
I(x, y) = H(x)−H(x|y)

Problem 6. Consider the distribution on non-negative integers given by

P (i) =
1

2i+1
.

(a) Using
∑∞

i=0 ar
i = a

1−r show that
∑∞

i=0 P (i) = 1.

(b) Using
∑∞

i=0 iri = r
(1−r)2 compute the numerical value of the entropy H2(P )

for this distribution (with your answer in bits).

(c) Give a code word (a bit string) c(i) for each non-negative integer i such that
the code is prefix-free (no code word is a proper prefix of any other code word)
and such that expected code length Ei∼P |c(i)| equals the entropy in bits you
calculated in part (b).

Problem 7. Problem 2 was on converting probabilities to codes. This problem
is on converting codes to probabilities. Consider any prefx-free code c(i) for
the non-negative integers i. Give a sampling procedure that either returns an
integer i or fails to terminate and where the probability of returning i is 2−|c(i)|.

Solution:

Initialize c to be the empty string.

until termination do:

If c = c(i) for some i return i.

With probabilty 1/2 set c to c0 else set c to c1

Problem 8. Shannon’s source coding theorem states that for any prefix-free
code we have

Ex∼P |c(x)| ≥ H2(P )

and for any P there exists a prefix-free code such that

Ex∼P |c(x)| ≤ H2(P ) + 1.

In this problem we will prove the second inequality. We consider the case of a
countably infinite set where each element has nonzero probability and consider
the following procedure for constructing a code.
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Enumerate the elements of X as x1, x2, x3, . . . in order of decreasing
probability.

Initialize the code to be empty (no xi is asigned any code)

For i = 1, 2, 3, . . . assign an unused code c(xi) to xi such that
|c(xi)| = d− log2 P (xi)e and such that no preifx of that code word
has been previously assigned.

Suppose we have defined code words c(x1), . . ., c(xi) and are trying to find a
code word for xi+1.

(a) Explain why no unassigned code word of length d− log2 P (xi+1)e can be a
prefix of any previously assigned code word.

Solution: For j < i+ 1 we have P (xj) ≥ P (xi+1). Hence non of the previously
assigned code can be longer than d− log2 P (xi+1)e.

(b) Explain why there must exist an unallocated code word c(xi+1) satisfying
the specified conditions. Hint: Show that the probability of non-termination for
the procedure of problem 7 is nonzero.

Solution: First, the probability of nontermination in the procedure defined
by problem 7 must be nonzero. This is because probability assigned to xi
by the code can be no larger than than P (xi) and hence the probability of
returning any xj with 0 ≤ j ≤ i is strictly less than one. Second, when the
sampling procedure fails to terminate it must encoutern an unallocated code
word satisfying the given conditions.

Problem 9: The ELBO We consider a model distribution QΦ(z, y) with
marginal distribution

QΦ(y) =
∑
z

QΦ(z, y).

We are interested in minimizing the unconditional (or unsupervised) cross-
entropy of this model.

Φ∗ = argmin
Φ

Ey∼Train − lnQΦ(y)

For many models of interestQΦ(z, y) can be efficiently computed asQΦ(z)QΦ(y|z)
but QΦ(y) is intractable to compute. In a variational auto-encoder we train a
second model Q̃Ψ(z|y) and use the following inequality

lnQΦ(y) ≥ ELBO

= Ez∼Q̃(z|y) ln
QΦ(z, y)

Q̃Ψ(z|y)

Rather than minimize the cross entropy we can maximize the ELBO (the Evi-
dence Lower BOund) which corresponds to minimizing an upper bound on the
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cross entropy. Maximization of the ELBO with respect to model parameters Φ
and Ψ define a variational auto encoder (VAE). We will consider this in much
more detail later in the class. For now we just consider the formal equations.

a. The ELBO can be written as

ELBO = Ez∼Q̃(z|y) ln
QΦ(y)QΦ(z|y)

Q̃Ψ(z|y)
.

Here we have that the ELBO is the expectation of a log of a product of three
terms. Separate all three terms and express the terms other than lnQΦ(y) as
entropies or cross entropies.

Solution:

ELBO = Ez∼Q̃Ψ(z|y) ln
QΦ(y)QΦ(z|y)

Q̃Ψ(z|y)

=
(
Ez∼Q̃Ψ(z|y) lnQΦ(y)

)
+
(
Ez∼Q̃Ψ(z|y) lnQΦ(z|y)

)
+

(
Ez∼Q̃Ψ(z|y) ln

1

Q̃Ψ(z|y)

)
= lnQΦ(y)−H(Q̃Ψ(z|y), QΦ(z|y)) +H(Q̃(z|y))

b. Now rewrite the ELBO by separating it into one the term for QΦ(y) and
one term for the other two combined and write the combined term as a KL
divergence. Explain why your expression implies that the ELBO is a lower
bound on lnQΦ(y).

Solution:

ELBO = Ez∼Q̃Ψ(z|y) ln
QΦ(y)QΦ(z|y)

Q̃Ψ(z|y)

=
(
Ez∼Q̃Ψ(z|y) lnQΦ(y)

)
+

(
Ez∼Q̃Ψ(z|y) ln

QΦ(z|y)

Q̃Ψ(z|y)

)
= lnQΦ(y)−KL(Q̃Ψ(z|y), QΦ(z|y))

The lower bound property follows from the fact that KL divergence is non-
negative.

Problem 10: The Donsker-Varadhan Bound (a) For three distributions
P , Q and G show the following equality.

KL(P,Q) =

(
Ey∼P ln

G(y)

Q(y)

)
+KL(P,G)

7



Solution:

KL(P,Q) = Ey∼P ln
P (y)

Q(y)

= Ey∼P ln
P (y)G(y)

Q(y)G(y)

=

(
Ey∼P ln

G(y)

Q(y)

)
+

(
Ey∼P ln

P (y)

G(y)

)
=

(
Ey∼P ln

G(y)

Q(y)

)
+KL(P,G)

(b) Show that this implies

KL(P,Q) = sup
G

Ey∼P ln
G(y)

Q(y)
(3)

Solution: Part (a) implies that

KL(P,Q) ≥ Ey∼P ln
G(y)

Q(y)

and also implies that for G = P we have equality.
(c) Now define

G(y) =
1

Z
Q(y)es(y) (4)

Z =
∑
y

Q(y)es(y) (5)

Show that if Q has full support (is nonzero everywhere) then any distribution
G with full supprt can be represented by a score s(y) satisfying (4) and that
under this change of variables we have

KL(P,Q) = sup
s

Ey∼P s(y)− lnEy∼Q es(y)

Solution: Given any G which does not assign zero probability to any point we

can take s(y) = ln G(y)
Q(y) which gives Z = 1 and satisfies (4). Plugging (4) into

(3) gives the result for distributions with full support. Arbitrary distributions
are limits of distributions with full support and the result holds in general.

This is the Donsker-Varadhan variational representation of KL-divergence. This
can be used in cases where we can sample from P and Q but cannot compute
P (y) or Q(y). Instead we can use a model score sΦ(y) where sΦ(y) can be
computed.
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