TTIC 31230 Fundamentals of Deep Learning

Contrastive Learning Problems

Problem 1: Upper Bounding H(y)

We consider a population distribution Pop on a set of observable values y and a stochastic encoder defining a conditional distribution $P_{\Psi}(z|y)$. We assume that we can sample from $P_{\Psi}(z|y)$ and that for any given z and y we can compute $P_{\Psi}(z|y)$. The population and the encoder define a joint distribution $P_{\text{Pop},\Psi}(y,z)$ where y is drawn from the population and z is drawn from $P_{\Psi}(z|y)$. All probabilities and information-theoretic quantities in this problem refer to this joint distribution.

We will use the fact that mutual information satisfies

$$I(y, z) = H(y) - H(y|z) = H(z) - H(z|y)$$

which implies

$$H(y) = H(z) - H(z|y) + H(y|z)$$
(1)

(a) Rewrite (1) in terms of expectations over $y \sim \text{Pop}$ and $z \sim P_{\Psi}(z|y)$ of quantities defined on Pop(y), $P_{\text{Pop},\Psi}(z)$, $P_{\text{Pop},\Psi}(z|y)$ and $P_{\text{Pop},\Psi}(y|z)$.

Solution:

$$E_{y \sim \text{Pop}} -\ln \text{Pop}(y) = E_{y \sim \text{Pop}, z \sim P_{\Psi}(z|y)} -\ln P_{\Psi}(z) + \ln P_{\text{Pop},\Psi}(z|y) - \ln P_{\text{Pop},\Psi}(y|z)$$

(b) Which of the terms in (1) can be directly estimated by simply sampling $y \sim \text{Pop}$ and $z \sim P_{\Psi}(z|y)$.

Solution: Just the middle term H(z|y).

(c) Recall that the cross-entropy H(P,Q) is defined to be $E_{x\sim P} - \ln Q(x)$ and that $H(P) \leq H(P,Q)$ for any Q. Let $P_{\Phi}(z)$ and $P_{\Theta}(y|z)$ be two additional models and consider the cross entropies $H(P_{\text{Pop},\Psi}(z), P_{\Phi}(z))$ and $H(P_{\text{Pop},\Psi}(y|z), P_{\Theta}(y|z))$. Using the fact that cross-entropies upper bound entropies give an upper bound on H(y) derived from (1) by replacing entropies by cross-entropies to these models. Express your upper bound as an expectation over sampling.

Solution:

$$H(y) \le E_{y \sim \text{Pop}, z \sim P_{\Psi}(z|y)} - \ln P_{\Phi}(z) + \ln P_{\Psi}(z|y) - \ln P_{\Theta}(y|z)$$

(d) Which terms in you solution to (c) can be estimated directly by sampling.

Solution: All

(e) Consider minimizing the upper bound on H(y) given in your solution to (c). How is this related the VAE training objective?

Solution: It is exactly the same.