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Contrastive Coding for Speech

van den Oord, Li and Vinyals,

Representation Learning with Contrastive Predictive Coding, 2018

What should we abstract from the past that is relevant to the
future?

2



Contrastive Coding for Speech

Unlike VAEs, contrastive coding is about capturing mu-
tual information. Intuitively we want to separate signal
from noise and avoid modeling noise.
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Contrastive Coding for Speech

We abstract this problem to that of capturing the mutual in-
formation between any two arbitrary random variables x and
y.
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Contrastive Coding

We consider a population distribution on pairs (x, y).

For example:

• x might be an image and y might be the text of a caption
for image x (CLIP).

• x might be an video frame and y video frame a second later.

• x might be a window of a sound wave and y a later window
(Wav2Vec).

• x = f (z) and y = f (z) where f and g are transformation
functions on an image z such as translation, rotation, color
shift, or cropping. (augmentation) of x. (SimCLR)
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Contrastive Coding

We draw pairs (x1, y1), . . . (xB, yB) from the population. We
then select b uniformly from 1 to B and construct the tuple
(xb, y1, . . . , yB, b).

We then train a model to predict b.

enc∗x, enc∗y = argmin
encx,ency

E(x,y1,...,yB,b)

[
− lnPencx,ency(b|x, y1, . . . , yB)

]
Pencx,ency(b|x, y1, . . . , yB) = softmax

b
encx(x)>ency(yb)
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The Contrastive Coding Theorem

For any distribution on pairs (x, y), with contrastive probabil-
ities computed by

P (b|x, y1, . . . , yB) = softmax
b

s(x, yb)

we have

I(x, y) ≥ lnB − E(x,y1,...,yB,b) [− lnP (b|(x, y1, . . . , yB))]

Chen et al., On Variational Bounds of Mutual Information,
May 2019.
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CLIP, January 2021, OpenAI

CLIP: Contrastive Language-Image Pre-training.

Trained on images and associated text (such as image captions
or hypertext links to images) CLIP computes embeddings of
text and embeddings of images (“co-embeddings”) trained to
capture the mutual information between the two.
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CLIP Constrastive Coding
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CLIP Image Classification
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Zero-Shot Image Classification
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Zero-Shot Image Classification
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A Weakness of Contrastive Coding

I(x, y) ≥ lnB − E(x,y1,...,yB,b) [− lnP (b|(x, y1, . . . , yB)]

The discrimination problem may be too easy.

The guarantee can never be stronger than lnB where B is the
batch size.

Suppose we have 100 bits of mutual information as seem plau-
sible for translation pairs.
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Addresses the Weakness with Large Batch Size

I(x, y) ≥ lnB − E(x,y1,...,yB,b)
[− lnP (b|(x, y1, . . . , yB)]

For CLIP the batch size B = 215 so we can potentially guar-
antee 15 bits of mutual information.

14



Tishby’s Information Bottleneck

The Information Bottleneck Method
Tishby, Pereira and Bialeck, 1999

Design Penc(z|x) with the following objective.

enc∗ = argmin
enc

I(z, x)− βI(z, y)

This does not restric H(z).
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Balancing Mutual Information with Encoder Enrtopy

enc∗ = argmin
enc

H(enc(x))− βI(enc(x), y)

= argmin
enc

H(enc(x))− β(H(y)−H(y|enc(x)))

= argmin
enc

H(enc(x)) + βH(y|enc(x))
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Balancing Mutual Information with Encoder Enrtopy

H(enc(x)) + βH(y|enc(x))

= E(x,y)∼Pop[ − lnP (enc(x)) + β(− lnP (y|enc(x)) ]

≤ E(x,y)∼Pop[ − lnPpri(enc(x)) + β(− lnPdec(y|enc(x)) ]

enc∗, dec∗, pri∗ = argmin
enc,dec,pri

E(x,y)∼Pop[ − lnPpri(enc(x))+β(− lnPdec(y|enc(x)) ]
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Autoregressive Image and Voice Modeling

Strong VAE image modeling was first achieved with autore-
gressive token modeling.

van den Oord, Vinyals and Kavukcuoglu,
Neural Discrete Representation Learning, 2017

Token Transformer

Image-to-Tokens, Tokens-to-Image
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VQ-VAE-2, June 2019

Generating Diverse High-Fidelity Images with VQ-VAE-2
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VAE Tokenization of Images and Voice

Token Transformer

Image-to-Tokens, Tokens-to-Image

Let y range over a population (such as images or sound waves).

Assume that a given y is encoded as a tensor denoted zenc,p(y)
where p is a “position in y” (a pixel in an image tensor or time
window in a sound tensor) and zenc,p(y) ∈ Rd is a vector.
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Vector Quantization (Tokenization)

Token Transformer

Image-to-Tokens, Tokens-to-Image

Assume a finite set of K “tokens” where token k has an em-
bedding vector e(k) ∈ Rd.

Define kenc,p(y) by

kenc,p(y) = argmin
k

1

2
||zenc,p(y)− e(k)||2
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Reconstruction Loss

Ppri(k) kenc(y)

y

We now have a VAE where the tensor kenc(y) is the latent
variable.

The encoder and decoder are trained jointly.

The prior is a transformer trained after the encoder and de-
coder are fully trained.
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Training the Encoder and Decoder

Ppri(k) k(zenc(y))

y

Taking Pdec(y|k) to beN (ŷdec(k), I) we get an L2 reconstruc-
tion loss.

LRec =
1

2
|| y − ŷdec(e(k(zenc(y)))) ||2
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Training the Encoder and Decoder

Ppri(k) k(zenc(y))

y

LRec =
1

2
|| y − ŷdec(e(k(zenc(y)))) ||2

Because the tokens are discrete we do not get any gradient on
zenc(y).
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Straight-Through Gradients

Ppri(k) k(zenc(y))

y

LRec =
1

2
|| y − ŷdec(e(k(zenc(y)))) ||2

zenc,p(y).grad = ∇e(k(zenc,p(y)))LRec
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K-Means Gradients

We train zenc(y) and the token embeddings e(k).

LRec =
1

2
|| y − ŷdec(e(k(zenc(y)))) ||2

zenc,p(y).grad = ∇e(k(zenc,p(y)))LRec

LKM =
1

2
||zenc,p(y)− e(k(zenc,p))||2

e(k(zenc,p(y))).grad += β∇e(k(zenc,p(y)))LKM

β is a hyper-parameter that adjust the relative learning rates.
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Transformer Training

Finally we hold the encoder fixed and train the prior Ppri(z) to
be an auto-regressive model of the symbolic image kenc(s)[X, Y ].
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Tokenization and Gaussian Mixture Models (GMMs)

Consider modeling P (y|x) with y ∈ Rd

A Gaussian model has the form

y = ŷ(x) + σε, ε ∼ N (0, I)

ŷ = argmin
ŷ

Ex,y ||ŷ(x)− y||2
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Tokenization and Gaussian Mixture Models (GMMs)

Now consider a tokenizing decoder

y = Ek∼Pdec(k|x)[ e(k) + σε ], ε ∼ N (0, I)

We get that Pdec(y|x) is a Gaussian mixture model (GMM).

GMMs are significantly more expressive than single Gaussians.
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Wav2Vec 2.0, June 2020, Facebook

Trained on 53k hours of unlabeled audio (no text) they convert
speech to a sequence of discrete quantized vectors they call
“pseudo-text units”.

By training on only one hour of human-transcribed audio, and
using the Wav2Vec transcription into pseudo-text, they out-
perform the previous state of the art in word error rate for 100
hours of human-transcribed text.
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DALLE-1, January 2021
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GLSM, February 2021, Facebook

Generative Spoken Language Model (GSLM)

They then train a generative model of the sequences of pseudo-
text units learned from unlabeled audio.

This model can continue speech from a speech prompt in much
the same way that GPT-3 continues text from a text prompt.

Semantic and grammatical structure in a “unit language model”
is recovered from speech alone.
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Parti, June 2022

Scaling Autoregressive Models for Content-Rich Text-to-Image Generation

Yu et al.
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CM3Leon, September 2023

Scaling Autoregressive Multi-Modal Models: Pretraining and Instruction Tuning

Yu et al.
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Voice-Text Language Model (VoxtLM), September 2023

This is similar to CM3Leon but for voice and text rather than
images and text.

Voice is tokenized and then a transformer is used to model
sequences that alternate voice and text.
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