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Maximizing Mutual Information

Assume a population of pairs (x, y).

• x might be an image and y might be the text of a caption
for image x (CLIP).

• x might be an video frame and y video frame a second later.

• x might be a window of a sound wave and y a later window
(Wav2Vec).

• x and y are different transformations of an image z such as
translation, rotation, color shift, or cropping. (SimCLR,DINO)
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Maximizing Mutual Information

The Information Bottleneck Method Tishby, Pereira,
Bialek, (1999).

Assume a distribution on pairs (x, y) and an encoder Penc(z|x).

enc∗ = argmax
enc

I(z, y)− βI(z, x)
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Maximizing Mutual Information

The methods discussed here — contrastive coding and cotrain-
ing — can be interpreted as optimizing only the first term in
the information bottleneck.

We take the encoder to be deterministic enc(x) ∈ Rd and
maximize mutual information with y.

enc∗ = argmax
enc

I(enc(x), y)

Here there is no incentive in this objective for enc(x) to retain
information unrelated to y.

4



Maximizing Mutual Information.

enc∗ = argmax
enc

I(enc(x), y)

It would be natural to try to maximize a variational lower bound on
I(enc(x), y).

In the applications discussed here we expect hundreds of bits of mutual
information.

Unfortunately one can prove that no formal lower bound establishing hun-
dreds of bits of mutual information is possible without an exponential (2100)
number of training examples.

Formal Limitations on the Measurement of Mutual Informa-

tion, David McAllester, Karl Stratos, (November 2018)
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Surrogate Objectives and Hardness Parameters

Since variation optimization of mutual information is not pos-
sible, contrastive learning and cotraining each introduce a sur-
rogate objective.

Each surrogate objective has a parameter — the hardness pa-
rameter — that controls the difficulty of the optimization prob-
lem.

Increasing the hardness parameter makes training more dif-
ficult but should increase the resulting mutual information
I(enc(x), y) when training is successful.

6



Contrastive Coding

Representation Learning with Contrastive Predic-
tive Coding, van den Oord, Li and Vinyals (DeepMind,
2018)

CLIP: Learning Transferable Visual Models From
Natural Language Supervision (OpenAI, February 2021)
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The Contrastive Coding Desiderata

We draw a batch of pairs (x1, y1), . . . , (xB, yB).

We select one of the x values.

We train a classifier that, when given one of the x values and
the batch (y1, . . . , yB) of y values, must determine which y
was paired with the given x.
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The Contrastive Coding Surrogate Objective

We train two encoders encx and ency with encx(x) ∈ Rd and

ency(y) ∈ Rd.

enc∗x, enc∗y = argmin
encx,ency

E(b,xb,y1,...,yB)

[
− lnPencx,ency(b|xb, y1, . . . , yB)

]
+E(b,yb,x1,...,xB)

[
− lnPencx,ency(b|yb, x1, . . . , xB)

]

Pencx,ency(b|x, y1, . . . , yB) = softmax
b

encx(x)>ency(yb)

Pencx,ency(b|y, x1, . . . , xB) = softmax
b

ency(y)>encx(xb)
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The Contrastive Coding Hardness Parameter

L(encx, ency) = E(b,xb,y1,...,yB)

[
− lnPencx,ency(b|xb, y1, . . . , yB)

]
+ E(b,yb,x1,...,xB)

[
− lnPencx,ency(b|yb, x1, . . . , xB)

]

The hardness parameter is the batch size B. Making B large makes the
classification task harder.

In CLIP B = 215 = 32,768.
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Zero-Shot Image Classification
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Zero-Shot Image Classification
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Cotraining

Combining labeled and unlabeled data with co-training Avrim
Blum, and Tom Mitchell (1998)

PAC Generalization Bounds for Co-training, Dasgupta, Littman,
McAllester (2001)

DINOv1: Emerging Properties in Self-Supervised Vision Trans-
formers, (Meta, Inria, April 2021)

iBOT: Image BERT Pre-Training with Online Tokenizer, Zhou
et al. (ByteDance, January 2022)

DINOv2: Learning Robust Visual Features without Supervi-
sion, (Meta, Inria, February 2024)
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Cotraining

We again consider a population distribution on pairs (x, y).

In cotraining we assume a label set k ∈ {1, . . . , K}.

The labels have no a-priori meaning. Meaning will emerge from the train-
ing.

We train two classifiers PΦ(k|x) and PΨ(k|y) under a cotraining objective.
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Cotraining Desiderata

In cotraining we seek to find two classifiers PΦ(k|x) and PΨ(k|y) such that
on typical pairs (x, y) the two classifiers agree on the label.

(1) For a given pair (x, y) we want each classifier to be confident in its label.
Formally, we want that in expectation over the draw of a pair (x, y) the
entropies H(PΦ(k|x)) and H(PΨ(k|y)) are both small.

(2) For a given pair (x, y) we want the classifiers to agree on the label.
Formally, we want that in expectation over a draw of a pair (x, y) the
cross-entropies H(PΦ(k|x), Pψ(k|y)) and H(Pψ(k|y), PΦ(k|x)) are both
small.

(3) We want that over different draws of (x, y) the distributions of predicted
labels covers all the labels. Formally, we want the marginal distributions
PΦ(k) and PΨ(k) to have large entropy.
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The Cotraining Surrogate Objective

Φ∗,Ψ∗ = argmin
Φ,Ψ

E(x,y)∼Pop


H(PΦ(k|x), PΨ(k|y))

+ H(PΨ(k|y), PΦ(k|x))

− β(H(PΦ(k)) + H(PΨ(k)))

Here we have subsumed the criterion (1) – that the classifiers are confident
– into the cross-entropy terms. Making the cross entropies small requires
confidence of both classifiers as well as agreement.
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The Cotraining Hardness Parameter

Φ∗,Ψ∗ = argmin
Φ,Ψ

E(x,y)∼Pop


H(PΦ(k|x), PΨ(k|y))

+ H(PΨ(k|y), PΦ(k|x))

− β(H(PΦ(k)) + H(PΨ(k)))

The Hardness parameter is K, the number of labels. Getting agreement
on all labels, when all labels are used, is hard when the number of labels is
large.

in DINOv2 K = 210 + 29 = 1536.
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Collapse of the Surrogate Objective

Φ∗,Ψ∗ = argmin
Φ,Ψ

E(x,y)∼Pop


H(PΦ(k|x), PΨ(k|y))

+ H(PΨ(k|y), PΦ(k|x))

− β(H(PΦ(k)) + H(PΨ(k)))

SGD on the this surrogate objective collapses into making both PΦ(k|x)
and PΨ(k|y) uniform in k.

This maximizes H(PΦ(k)) and H(PΨ(k)) and gives

Φ = argmin
Φ

E(x,y) H(PΦ(k|x), PΨ(k|y)) + H(PΨ(k|y), PΦ(k|x))

Ψ = argmin
Ψ

E(x,y) H(PΦ(k|x), PΨ(k|y)) + H(PΨ(k|y), PΦ(k|x))

Hence this is a local optimum of SGD.
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Collapse of the Surrogate Objective

More generally whenever PΦ(k|x) and PΨ(k|y) agree we have.

Φ = argmin
Φ

E(x,y) H(PΦ(k|x), PΨ(k|y)) + H(PΨ(k|y), PΦ(k|x))

Ψ = argmin
Ψ

E(x,y) H(PΦ(k|x), PΨ(k|y)) + H(PΨ(k|y), PΦ(k|x))

So the gradients on Φ and Ψ vanish.

We can improve the cross-entropies by reducing both H(PΦ(k|x)) and
H(PΨ(k|y)) simultaneously. However, the amount of improvement is quadratic
(second order) in the change in parameters.

It seems that SGD is attracted to saddle points!
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DINOv1

We will discuss the simpler version DINOv1. DINOv2 is similar but with
a variety of engineering improvements.

The main contribution of DINO is a method for avoiding collapse of the
training into uniform distributions PΦ(k|x) and PΨ(k|y).

They their innovation “self-distillation”.

The basic idea of self-distillation is to do a brute-force enforcement the
desiderata (1)-(3) given above.
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Self-Distillation

They construct a “teacher network” P̃Φ(k|x) which uses the same parame-
ters as PΦ(k|x) but which is modified to enforce (encourage) the desiderata.

They then replace the cross-entropy losses in the cotraining objective with

H(sg(P̃Φ(k|x)), PΨ(k|y)) and H(sg(P̃Ψ(k|y)), PΦ(k|x)).

We train PΨ(k|y) to model P̃Φ(k|x) and train PΦ(k|x) to model P̃Ψ(k|y).
sg is the stop-gradient operator.

21



Why the stop-gradient sg?

H(P̃Φ(k|x), PΨ(k|y)) = Ek∼P̃Φ(k|x) [− lnPΨ(k|y)]

Computing the gradient with respect to Φ is problematic in any case —
optimizing a sampling distribution is problematic in general.

We simply avoid the issue by not trying to compute this gradient.

We sample from P̃Φ(k|x) and compute gradients on Ψ.
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Encouraging the Desiderata

Increasing Confidence (Sharpening): They put a temperature pa-
rameter into the softmax of P̃Φ(k|x). This allows P̃Ψ(k|x) to be defined at
a lower temperature (higher β) which “sharpens” the distribution.

Diversifying the Label Usage (Centering): For each category k
we compute an EMA over the draw of pairs (x, y) of the score (the logit)
sΦ(k, x). Denote this EMA value by s(k). The softmax defining the dis-
tribution P̃Φ(k|x) is then

P̃Φ(k|x) = softmax
k

β(sΦ(k|x)− s(k))
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DIVOv1 PyTorch Pseudo-code
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Results for DINOv2

25



The Vision Transformer (ViT)

Part of the motivation for DINOv1 (Meta, April 2021) was to demonstrate
the power of visual transformers (Google Brain, October 2020).

An Image is Worth 16x16 Words: Transformers for Image
Recognition at Scale, Alexey Dosovitskiy et al. (Oct 2020, Google
Brain)
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ViT

An image I with height X , width Y and C = 3 color channels has shape
I [X, Y,C]. In a ViT this is processed by a linear layer with stride s resulting
in a layer L with shape L[X/s, Y/s,N ]. This processing is equivalent to
a Conv2d layer with stride s but without an activation function (there is
no ReLU).

for x, y, n,∆x,∆y, c L[x, y, n] += W [n,∆x,∆y, c]I [sx+∆x, sy+∆Y, c]

In the original ViT paper the stride s is taken to be 16 (hence the title).
DINOv2 uses s = 14.

Presumably for each neuron n the tensor W [n,∆X,∆Y,C] converges on
some Haar wavelet.
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ViT

We now have a tensor L(X, Y,N). We treat this as X × Y positions with
an “embedding vector” at each position.

At each position the embedding vector is concatenated with a position
embedding. The position embeddings can be trained so there is no need
to make a distinction between “linear” vs. “spatial” position embeddings
(this would presumably not be true for relative position embeddings.)

An additoinal non-image position is added to represent the image as a
whole. The vector computed for the additonal position, which I will write
as encx(x), is interpreted as the feature vector for image x.

In DINOv2 each component encx(x)[k] of the image embedding is inter-
preted as the score of label k.
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Attention Gives Segmentation in DINOv1

This is showing the attention that the whole image position pays to the
other image positions.
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PCA Gives Part Matching in DINOv2

For each column we pool the top transformer layer vectors across the four
images of the column and do PCA on that pool of vectors.

Each image is segmented by thresholding the largest PCA component.

The three colors in the image then correspond to the strength of the three
largest PCA components. We then get part matching across different im-
ages.
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